Now showing 1 - 5 of 5
  • Publication
    Co-ordination in morphological leaf traits of early diverging angiosperms is maintained following exposure to experimental palaeoatmospheric conditions of sub-ambient O2 and elevated CO2
    In order to be successful in a given environment a plant should invest in a vein and stomatal network that ensures balance between both water supply and demand. Vein density (Dv) and stomatal density (SD) have been shown to be strongly positively correlated in response to a range of environmental variables in more recently evolved plant species, but the extent of this relationship has not been confirmed in earlier diverging plant lineages. In order to examine the effect of a changing atmosphere on the relationship between Dv and SD, five early-diverging plant species representing two different reproductive plant grades were grown for seven months in a palaeo-treatment comprising an O2:CO2 ratio that has occurred multiple times throughout plant evolutionary history. Results show a range of species-specific Dv and SD responses to the palaeo-treatment, however we show that the strong relationship between Dv and SD under modern ambient atmospheric composition is maintained following exposure to the palaeo-treatment. This suggests strong co-ordination between vein and stomatal traits even under relatively extreme environmental change. This co-ordination supports existing plant function proxies that use the distance between vein endings and stomata (Dm) to infer plant palaeo-physiology such as assimilation rate, and as a result, lends confidence to future application of palaeo-CO2 proxy models that require robust estimates of palaeo-assimilation rate as key initialisation parameters. 
      513Scopus© Citations 6
  • Publication
    Increasing stomatal conductance in response to rising atmospheric CO2
    Background and Aims: Studies have indicated that plant stomatal conductance (gs) decreases in response to elevated atmospheric CO2, a phenomenon of significance for the global hydrological cycle. However, gs increases across certain CO2 ranges have been predicted by optimisation models. The aim of this work was to demonstrate that under certain environmental condition, gs can increase in response to elevated CO2. Methods: When using (i) an extensive, up-to-date, synthesis of gs responses in FACE experiments, (ii) in situ measurements across four biomes showing dynamic gs responses to a CO2 rise of ~50ppm (characterising the change in this greenhouse gas over the past three decades) and (iii) a photosynthesis-stomatal conductance model, it is demonstrated that gs can in some cases increase in response to increasing atmospheric CO2. Key Results: Field observations are corroborated by an extensive synthesis of gs responses in FACE experiments showing that 11.8% of gs responses under experimentally elevated CO2 are positive. They are further supported by a strong data-model fit (r2=0.607) using a stomatal optimization model applied to the field gs dataset. A parameter space identified in the Farquhar-Ball-Berry photosynthesis-stomatal conductance model confirms field observations of increasing gs under elevated CO2 in hot dry conditions. It was shown that contrary to the general assumption, positive gs responses to elevated CO2, although relatively rare, are a feature of woody taxa adapted to warm, low-humidity conditions, and that this response is also demonstrated in global simulations using the Community Land Model (CLM4). Conclusions: The results contradict the over-simplistic notion that global vegetation always responds with decreasing gs to elevated CO2, a finding that has important implications for predicting future vegetation feedbacks on the hydrological cycle at the regional level.
      251Scopus© Citations 45
  • Publication
    Plant responses to decadal scale increments in atmospheric CO2 concentration - comparing two stomatal conductance sampling methods
    There are several lines of evidence suggesting that the vast majority of C3 plants respond to elevated atmospheric CO2 by decreasing their stomatal conductance (gs). However, in the majority of CO2 enrichment studies, the response to elevated CO2 are tested between plants grown under ambient (380–420 ppm) and high (538–680 ppm) CO2 concentrations and measured usually at single time points in a diurnal cycle. We investigated gs responses to simulated decadal increments in CO2 predicted over the next 4 decades and tested how measurements of gs may differ when two alternative sampling methods are employed (infrared gas analyzer [IRGA] vs. leaf porometer). We exposed Populus tremula, Popolus tremuloides and Sambucus racemosa to four different CO2 concentrations over 126 days in experimental growth chambers at 350, 420, 490 and 560 ppm CO2; representing the years 1987, 2025, 2051, and 2070, respectively (RCP4.5 scenario). Our study demonstrated that the species respond non-linearly to increases in CO2 concentration when exposed to decadal changes in CO2. Under natural conditions, maximum operational gs is often reached in the late morning to early afternoon, with a mid-day depression around noon. However, we showed that the daily maximum gs can, in some species, shift later into the day when plants are exposed to only small increases (70 ppm) in CO2. A non-linear decreases in gs and a shifting diurnal stomatal behavior under elevated CO2, could affect the long-term daily water and carbon budget of many plants in the future, and therefore alter soil–plant–atmospheric processes.
      341Scopus© Citations 5
  • Publication
    Differences in the photosynthetic plasticity of ferns and Ginkgo grown in experimentally controlled low [O2]: [CO2] atmospheres may explain their contrasting ecological fate across the Triassic-Jurassic mass extinction boundary
    Background and Aims: Fluctuations in [CO2] have been widely studied as a potential driver of plant evolution; however, the role of a fluctuating [O2]:[CO2] ratio is often overlooked. The present study aimed to investigate the inherent physiological plasticity of early diverging, extant species following acclimation to an atmosphere similar to that across the Triassic–Jurassic mass extinction interval (TJB, approx. 200 Mya), a time of major ecological change. Methods: Mature plants from two angiosperm (Drimys winteri and Chloranthus oldhamii), two monilophyte (Osmunda claytoniana and Cyathea australis) and one gymnosperm (Ginkgo biloba) species were grown for 2 months in replicated walk-in Conviron BDW40 chambers running at TJB treatment conditions of 16 % [O2]– 1900 ppm [CO2] and ambient conditions of 21 % [O2]–400 ppm [CO2], and their physiological plasticity was assessed using gas exchange and chlorophyll fluorescence methods. Key Results: TJB acclimation caused significant reductions in the maximum rate of carboxylation (VCmax) and the maximum electron flow supporting ribulose-1,5-bisphosphate regeneration (Jmax) in all species, yet this downregulation had little effect on their light-saturated photosynthetic rate (Asat). Ginkgo was found to photorespire heavily under ambient conditions, while growth in low [O2]:[CO2] resulted in increased heat dissipation per reaction centre (DIo/RC), severe photodamage, as revealed by the species' decreased maximum efficiency of primary photochemistry (Fv/Fm) and decreased in situ photosynthetic electron flow (Jsitu). Conclusions: It is argued that the observed photodamage reflects the inability of Ginkgo to divert excess photosynthetic electron flow to sinks other than the downregulated C3 and the diminished C2 cycles under low [O2]:[CO2]. This finding, coupled with the remarkable physiological plasticity of the ferns, provides insights into the underlying mechanism of Ginkgoales' near extinction and ferns' proliferation as atmospheric [CO2] increased to maximum levels across the TJB.
      361Scopus© Citations 11
  • Publication
    How well do you know your growth chambers? Testing for chamber effect using plant traits
    Background: Plant growth chambers provide a controlled environment to analyse the effects of environmental parameters (light, temperature, atmospheric gas composition etc.) on plant function. However, it has been shown that a ‘chamber effect’ may exist whereby results observed are not due to an experimental treatment but to inconspicuous differences in supposedly identical chambers. In this study, Vicia faba L. 'Aquadulce Claudia' (broad bean) plants were grown in eight walk-in chambers to establish if a chamber effect existed, and if so, what plant traits are best for detecting such an effect. A range of techniques were used to measure differences between chamber plants, including chlorophyll fluorescence measurements, gas exchange analysis, biomass, reproductive yield, anatomical traits and leaf stable carbon isotopes. Results and discussion: Four of the eight chambers exhibited a chamber effect. In particular, we identified two types of chamber effect which we term 'resolvable' or 'unresolved'; a resolvable chamber effect is caused by malfunctioning components of a chamber and an unresolved chamber effect is caused by unknown factors that can only be mitigated by appropriate experimental design and sufficient replication. Not all measured plant traits were able to detect a chamber effect and no single trait was capable of detecting all chamber effects. Fresh weight and flower count detected a chamber effect in three chambers, stable carbon isotopes (δ13C) and net rate CO2 assimilation (An) identified a chamber effect in two chambers, stomatal conductance (gs) and total performance index detected an effect only in one chamber. Conclusion: (1) Chamber effects can be adequately detected by fresh weight measurements and flower counts on Vicia faba plants. These methods were the most effective in terms of detection and most efficient in terms of time. (2) δ13C, gs and An measurements help distinguish between resolvable and unresolved chamber effects. (3) Unresolved chamber effects require experimental unit replication while resolvable chamber effects require investigation, repair and retesting in advance of initiating further experiments.
      448Scopus© Citations 33