Now showing 1 - 1 of 1
  • Publication
    3D-Printed Peptide-Hydrogel Nanoparticle Composites for Surface-Enhanced Raman Spectroscopy Sensing
    Precise control over the arrangement of plasmonic nanomaterials is critical for label-free single-molecule surface-enhanced Raman spectroscopy (SERS)-based sensing applications. SERS templates should provide high sensitivity and reproducibility and be cost-effective and easy to prepare. Additive manufacturing by extrusion-based three-dimensional (3D) printing is an emerging technique for the spatial arrangement of nanomaterials and is a method that may satisfy these SERS template requirements. In this work, we use 3D printing to produce sensitive and reproducible SERS templates using a fluorenylmethyloxycarbonyl diphenylalanine (Fmoc-FF) hydrogel loaded with silver or gold nanoparticles. The Fmoc-FF template allows the detection of low Raman cross-section molecules such as adenine at concentrations as low as 100 pM.
      625Scopus© Citations 22