Now showing 1 - 5 of 5
  • Publication
    Development and Validation of the Operations Procedures and Manual for a 2U CubeSat, EIRSAT-1, with Three Novel Payloads
    The CubeSat standard, relatively short launch timescale, and orders of magnitude difference in cost in comparison to large scale missions, has allowed universities and smaller institutions to develop space missions. The Educational Irish Research Satellite (EIRSAT-1) is a 2U CubeSat being developed in University College Dublin (UCD) as part of the second round of the European Space Agency (ESA) Education Office’s Fly Your Satellite! (FYS) Programme. EIRSAT-1 is a student-led project to build, test, launch and operate Ireland’s first satellite. CubeSats typically use commercial off-the-shelf (COTS) components to facilitate new teams in developing a satellite on a rapid timescale. While some of the EIRSAT-1 subsystems are COTS procured from AAC Clyde Space, EIRSAT-1 has three novel experiments on-board which have been developed in UCD. The spacecraft’s Antenna Deployment Module has also been designed and built in-house. The on-board computer (OBC), procured from AAC Clyde Space, has been adapted to interface with these novel hardware components, accompanied by in-house developed software and firmware. All of these innovative subsystems complicate the CubeSat functionality making it essential to document and rigorously test the operations procedures for EIRSAT-1. In preparation for launch with these novel spacecraft subsystems, the EIRSAT-1 Operations Manual is being developed and incrementally verified. The Operations Manual contains the procedures to command and control the satellite, account for nominal and non-nominal scenarios and guide the operator in determining the cause of any anomalies observed during the mission and facilitate recovery. A series of operations development tests (ODTs) have been designed and conducted for a robust verification process. Each procedure is written up by a member of the EIRSAT-1 Operations Team in the EIRSAT-1 Operations Manual format. During an ODT, an in-flight scenario is considered in which the procedure under test is required. The procedure is then followed by a team member who has not been involved in the procedure development process. The feedback from these tests and from the operators is used to improve the procedures and continually update the Operations Manual. This paper will present the approach to operations development used by the EIRSAT-1 team and discuss the lessons learned for CubeSat operations development, testing and pre-flight verification.
      256
  • Publication
    EduCube: The 1U Educational CubeSat
    EduCube is a 1U Cubesat developed specifically for educational purposes. It is used in a hands-on training laboratory for Masters students to allow them to gain familiarity with the satellite subsystems found in a Cubesat. The students work in groups, following a set of exercises and also devising their own experiments. EduCube was designed and built in-house and is largely compliant with the Cal Poly standard.
      238
  • Publication
    EIRSAT-1 - The Educational Irish Research Satellite
    The Educational Irish Research Satellite, "EIRSAT-1", is a collaborative space project that aims to build, launch and operate the first ever Irish satellite. The EIRSAT-1 spacecraft is a 2U CubeSat incorporating three novel experiment payloads: GMOD, a gamma-ray detector; EMOD, a thermal management coating demonstration; and WBC, an attitude control algorithm. The spacecraft is currently under construction at University College Dublin and will be delivered to ESA in late 2019.
      408
  • Publication
    Development of the Ground Segment Communication System for the EIRSAT-1 CubeSat
    The Educational Irish Research Satellite (EIRSAT-1) is a student-led project to design, build and test Ireland’s first satellite. As part of the development, a ground segment (GS) has also been designed alongside the spacecraft. The ground segment will support two-way communications with the spacecraft throughout the mission. Communication with the satellite will occur in the very high frequency (VHF) and the ultra high frequency (UHF) bands for the uplink and downlink respectively. Different modulation schemes have been implemented for both uplink and downlink as part of the GS system. Uplink incorporates an Audio Frequency Shift-Keying (AFSK) scheme, while downlink incorporates a Gaussian Minimum Shift-Keying (GMSK) scheme. In order for the spacecraft to successfully receive a telecommand (TC) transmitted from the ground station, a framing protocol is required. AX.25 was selected as the data link layer protocol. A hardware terminal node controller (TNC) executes both the AX.25 framing and the AFSK modulation. Keep It Simple Stupid (KISS) framing software was developed to allow data to be accepted by the TNC. A software defined radio (SDR) approach has been chosen for the downlink. GNURadio is software that allows flowcharts to be built to undertake the required signal processing of the received signal, the demodulation of the signal and the decoding of data. This paper provides a detailed account of the software developed for the ground segment communication system. A review of the AX.25 and KISS framing protocols is presented. The GNURadio flowcharts that handle the signal processing and data decoding are broken down and each constituent is explained. To ensure the reliability and robustness of the system, a suite of tests was undertaken, the results of which are also presented.
      230
  • Publication
    X-shooter and ALMA spectroscopy of GRB 161023A
    Context. Long gamma-ray bursts (GRBs) are produced during the dramatic deaths of massive stars with very short lifetimes, meaning that they explode close to the birth place of their progenitors. Over a short period they become the most luminous objects observable in the Universe, being perfect beacons to study high-redshift star-forming regions. Aims. We aim to use the afterglow of GRB 161023A at a redshift z = 2.710 as a background source to study the environment of the explosion and the intervening systems along its line of sight. Methods. For the first time, we complement ultraviolet (UV), optical and near-infrared (NIR) spectroscopy with millimetre spectroscopy using the Atacama Large Millimeter Array (ALMA), which allows us to probe the molecular content of the host galaxy. The X-shooter spectrum shows a plethora of absorption features including fine-structure and metastable transitions of Fe, Ni, Si, C, and O. We present photometry ranging from 43 s to over 500 days after the burst. Results. We infer a host-galaxy metallicity of [Zn/H] = −1.11 ± 0.07, which, corrected for dust depletion, results in [X/H] = −0.94 ± 0.08. We do not detect molecular features in the ALMA data, but we derive limits on the molecular content of log(NCO/cm−2) < 15.7 and log(NHCO+/cm−-12, which are consistent with those that we obtain from the optical spectra, log(NH2/cm−2)< 15.2 and log(NCO/cm−2) < 14.5. Within the host galaxy, we detect three velocity systems through UV, optical and NIR absorption spectroscopy, all with levels that were excited by the GRB afterglow. We determine the distance from these systems to the GRB to be in the range between 0.7 and 1.0 kpc. The sight line to GRB 161023A shows nine independent intervening systems, most of them with multiple components. Conclusions. Although no molecular absorption was detected for GRB 161023A, we show that GRB millimetre spectroscopy is now feasible and is opening a new window on the study of molecular gas within star-forming galaxies at all redshifts. The most favoured lines of sight for this purpose will be those with high metallicity and dust.
      168Scopus© Citations 12