Now showing 1 - 10 of 16
  • Publication
    Balance failure in single limb stance due to ankle sprain injury: An analysis of center of pressure using the fractal dimension method
    Instrumented postural control analysis plays an important role in evaluating the effects of injury on dynamic stability during balance tasks, and is often conveyed with measures based on the displacement of the center-of-pressure (COP) assessed with a force platform. However, the desired outcome of the task is frequently characterized by a loss of dynamic stability, secondary to injury. Typically, these failed trials are discarded during research investigations, with the potential loss of informative data pertaining to task success. The novelty of the present study is that COP characteristics of failed trials in injured participants are compared to successful trial data in another injured group, and a control group of participants, using the fractal dimension (FD) method. Three groups of participants attempted a task of eyes closed single limb stance (SLS): twenty-nine participants with acute ankle sprain successfully completed the task on their non-injured limb (successful injury group); twenty eight participants with acute ankle sprain failed their attempt on their injured limb (failed injury group); sixteen participants with no current injury successfully completed the task on their non-dominant limb (successful non-injured group). Between trial analyses of these groups revealed significant differences in COP trajectory FD (successful injury group: 1.58 ± 0.06; failed injury group: 1.54 ± 0.07; successful non-injured group: 1.64 ± 0.06) with a large effect size (0.27). These findings demonstrate that successful eyes-closed SLS is characterized by a larger FD of the COP path when compared to failed trials, and that injury causes a decrease in COP path FD.
      680Scopus© Citations 26
  • Publication
    Laboratory Measures of Postural Control During the Star Excursion Balance Test After Acute First-Time Lateral Ankle Sprain
    Context: No researchers, to our knowledge, have investigated the immediate postinjury-movement strategies associated with acute first-time lateral ankle sprain (LAS) as quantified by center of pressure (COP) and kinematic analyses during performance of the Star Excursion Balance Test (SEBT). Objective: To analyze the kinematic and COP patterns of a group with acute first-time LAS and a noninjured control group during performance of the SEBT. Design: Case-control study. Setting: University biomechanics laboratory. PATIENTS OR Other particpants: A total of 81 participants with acute first-time LAS (53 men, 28 women; age = 23.22 ± 4.93 years, height = 1.73 ± 0.09 m, mass = 75.72 ± 13.86 kg) and 19 noninjured controls (15 men, 4 women; age = 22.53 ± 1.68 years, height = 1.74 ± 0.08 m, mass = 71.55 ± 11.31 kg). Intervention: Participants performed the anterior (ANT), posterolateral (PL), and posteromedial (PM) reach directions of the SEBT. Main outcome Measure(s): We assessed 3-dimensional kinematics of the lower extremity joints and associated fractal dimension (FD) of the COP path during performance of the SEBT. Results: The LAS group had decreased normalized reach distances in the ANT, PL, and PM directions when compared with the control group on their injured (ANT: 58.16% ± 6.86% versus 64.86% ± 5.99%; PL: 85.64% ± 10.62% versus 101.14% ± 8.39%; PM: 94.89% ± 9.26% versus 107.29 ± 6.02%) and noninjured (ANT: 60.98% ± 6.74% versus 64.76% ± 5.02%; PL: 88.95% ± 11.45% versus 102.36% ± 8.53%; PM: 97.13% ± 8.76% versus 106.62% ± 5.78%) limbs (P < .01). This observation was associated with altered temporal sagittal-plane kinematic profiles throughout each reach attempt and at the point of maximum reach (P < .05). This result was associated with a reduced FD of the COP path for each reach direction on the injured limb only (P < .05). Conclusions: Acute first-time LAS was associated with bilateral deficits in postural control, as evidenced by the bilateral reduction in angular displacement of the lower extremity joints and reduced reach distances and FD of the COP path on the injured limb during performance of the SEBT.
      402Scopus© Citations 52
  • Publication
    Single-leg drop landing movement strategies in participants with chronic ankle instability compared with lateral ankle sprain 'copers'
    Individuals with CAI display alterations in hip joint kinematics and energetics during a unipodal landing task compared to LAS 'copers'. These alterations may be responsible for the increased risk of injury experienced by individuals with CAI during landing manoeuvres. Thus, clinicians must recognise the potential for joints proximal to the affected ankle to contribute to impaired function following an acute lateral ankle sprain injury and to develop rehabilitation protocols accordingly.
    Scopus© Citations 46  1161
  • Publication
    Acute ankle sprain injury alters kinematic and centre of pressure measures of postural control during single limb stance
    Background: Upright single-limb stance (SLS) is maintained via integration of visual, vestibular and somatosensory afferents. The presence of redundancies between these afferents allows the sensorimotor system to simplify a specific task within a number of strategies. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. No current investigation has supplemented kinetic analysis of eyes-open and eyes-closed SLS tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain (LAS) group to assess the adaptive capacity of the sensorimotor system to injury. Objective: To compare centre of pressure (COP) and lower limb postural orientation characteristics of participants with acute LAS to non-injured participants during a SLS task. Design Cross-sectional: Setting University biomechanics laboratory. Participants: 66 participants with acute LAS completed a task of eyes-open SLS on their injured and non-injured limbs (task 1). 23 of these participants successfully completed the SLS task with their eyes closed (task 2). A non-injured control group of nineteen participants completed task 1, with 16 completing task 2. Main outcome measures: 3D kinematics of the hip, knee and ankle joints as well as associated fractal dimension (FD) of the COP path. Results: Between trial analyses of groups revealed significant differences in lower limb kinematics and FD of the COP path for task 2. Post-hoc testing revealed that non-injured control group bilaterally assumed a position of greater hip flexion compared to LAS participants (injured limb=7.41±6.1◦ vs 1.44±4.8◦; non-injured limb=9.59±8.5◦ vs 2.16±5.6◦), with a corollary of greater FD of the COP path (injured limb=1.39±0.16 vs 1.25±0.14; non-injured limb=1.37±0.21 vs 1.23±0.14). Conclusion: Acute LAS causes bilateral impairment in postural control strategies.
      483
  • Publication
    Single-leg drop landing movement strategies 6 months following first-time acute lateral ankle sprain injury
    No research exists predicating a link between acute ankle sprain injury-affiliated movement patterns and those of chronic ankle instability (CAI) populations. The aim of the current study was to perform a biomechanical analysis of participants, 6 months after they sustained a first-time acute lateral ankle sprain (LAS) injury to establish this link. Fifty-seven participants with a 6-month history of first-time LAS and 20 noninjured participants completed a single-leg drop landing task on both limbs. Three-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment of force) data were acquired for the joints of the lower extremity, from 200 ms pre-initial contact (IC) to 200 ms post-IC. Individual joint stiffnesses and the peak magnitude of the vertical component of the ground reaction force (GRF) were also computed. LAS participants displayed increases in hip flexion and ankle inversion on their injured limb (P < 0.05); this coincided with a reduction in the net flexion-extension moment at the hip joint, with an increase in its stiffness (P < 0.05). There was no difference in the magnitude of the peak vertical GRF for either limb compared with controls. These results demonstrate that altered movement strategies persist in participants, 6 months following acute LAS, which may precipitate the onset of CAI.
      961Scopus© Citations 37
  • Publication
    Lower Limb Interjoint Postural Coordination One Year after First-Time Lateral Ankle Sprain
    Introduction: Longitudinal analyses of participants with a history of lateral ankle sprain are lacking. This investigation combined measures of lower limb interjoint coordination and stabilometry to evaluate static unipedal stance with the eyes open (condition 1) and closed (condition 2) in a group of participants with chronic ankle instability (CAI) compared to lateral ankle sprain ‘‘copers’’ (both recruited 12 months after sustaining an acute first-time lateral ankle sprain) and a group of noninjured controls. Methods: Twenty-eight participants with CAI, 42 lateral ankle sprain ‘‘copers,’’ and 20 noninjured controls completed three 20-s singlelimb stance trials in conditions 1 and 2. An adjusted coefficient of multiple determination statistic was used to compare stance limb threedimensional kinematic data for similarity to establish patterns of interjoint coordination. The fractal dimension of the stance limb center of pressure path was also calculated. Results: Between-group analyses revealed that participants with CAI displayed notable increases in ankle–hip linked coordination compared with both lateral ankle sprain ‘‘copers’’ (j0.52 (1.05) vs 0.28 (0.9), P = 0.007) and controls (j0.52 (1.05) vs 0.63 (0.64), P = 0.006) in condition 1 and compared with controls only (0.62 (1.92) vs 0.1 (1.0) P = 0.002) in condition 2. Participants with CAI also exhibited a decrease in the fractal dimension of the center-of-pressure path during condition 2 compared with both controls and lateral ankle sprain ‘‘copers.’’ Conclusions: Participants with CAI present with a hip-dominant strategy of eyes-open and eyes-closed static unipedal stance. This coincided with reduced complexity of the stance limb center of pressure path in the eyes-closed condition.
      453Scopus© Citations 18
  • Publication
    Lower extremity coordination and symmetry patterns during a drop vertical jump task following acute ankle sprain
    Purpose: Evaluate the potentially adaptive movement patterns associated with acute lateral ankle sprain (LAS) using biomechanical analyzes. Methods: Thirty participants with acute LAS and nineteen controls performed a drop vertical jump (DVJ) task. 3D kinematic and sagittal plane kinetic profiles were plotted for the hip, knee and ankle joints of both limbs for the drop jump (phase 1) and drop landing (phase 2) phases of the DVJ. Inter-limb symmetry and the rate of force development (RFD) relative to bodyweight (BW) during both phases of the DVJ were also determined. Results: The LAS group displayed reduced ankle plantar-flexion on their injured limb during phase 2 of the DVJ, with greater associated inter-limb asymmetry for this movement (p < .05). The LAS group also displayed altered kinetic profiles, with increased inter-limb hip asymmetry for both phases of the DVJ (p < .05). This was associated with a decrease in the LAS participants’ injured limb RFD during phase 2 of the DVJ when compared with that of controls (11.76 ± 3.43 BW/s vs 14.60 ± 3.20 BW/s; p = .01, η2 = 0.14). Conclusion: Participants with LAS display potentially aberrant coordination strategies during a DVJ as evidenced by an increased dependence on the non-injured limb.
    Scopus© Citations 26  901
  • Publication
    Recovery From a First-Time Lateral Ankle Sprain and the Predictors of Chronic Ankle Instability: A Prospective Cohort Analysis
    Background: Impairments in motor control may predicate the paradigm of chronic ankle instability (CAI) that can develop in the year after an acute lateral ankle sprain (LAS) injury. No prospective analysis is currently available identifying the mechanisms by which these impairments develop and contribute to long-term outcome after LAS. Purpose: To identify the motor control deficits predicating CAI outcome after a first-time LAS injury. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Eighty-two individuals were recruited after sustaining a first-time LAS injury. Several biomechanical analyses were performed for these individuals, who completed 5 movement tasks at 3 time points: (1) 2 weeks, (2) 6 months, and (3) 12 months after LAS occurrence. A logistic regression analysis of several "salient" biomechanical parameters identified from the movement tasks, in addition to scores from the Cumberland Ankle Instability Tool and the Foot and Ankle Ability Measure (FAAM) recorded at the 2-week and 6-month time points, were used as predictors of 12-month outcome. Results: At the 2-week time point, an inability to complete 2 of the movement tasks (a single-leg drop landing and a drop vertical jump) was predictive of CAI outcome and correctly classified 67.6% of cases (sensitivity, 83%; specificity, 55%; P = .004). At the 6-month time point, several deficits exhibited by the CAI group during 1 of the movement tasks (reach distances and sagittal plane joint positions at the hip, knee and ankle during the posterior reach directions of the Star Excursion Balance Test) and their scores on the activities of daily living subscale of the FAAM were predictive of outcome and correctly classified 84.8% of cases (sensitivity, 75%; specificity, 91%; P < .001). Conclusion: An inability to complete jumping and landing tasks within 2 weeks of a first-time LAS and poorer dynamic postural control and lower self-reported function 6 months after a first-time LAS were predictive of eventual CAI outcome.
    Scopus© Citations 255  2496
  • Publication
    Postural control strategies during single limb stance following acute lateral ankle sprain
    Single-limb stance is maintained via the integration of visual, vestibular and somatosensory afferents. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. This investigation supplements kinetic analysis of eyes-open and eyes-closed single-limb stance tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain group to assess the adaptive capacity of the sensorimotor system to injury. Sixty-six participants with first-time acute lateral ankle sprain completed a 20-second eyes-open single-limb stance task on their injured and non-injured limbs (task 1). Twenty-three of these participants successfully completed the same 20-second single-limb stance task with their eyes closed (task 2). A non-injured control group of 19 participants completed task 1, with 16 completing task 2. 3-dimensional kinematics of the hip, knee and ankle joints, as well as associated fractal dimension of the center-of-pressure path were determined for each limb during these tasks. Between trial analyses revealed significant differences in stance limb kinematics and fractal dimension of the center-of-pressure path for task 2 only. The control group bilaterally assumed a position of greater hip flexion compared to injured participants on their side-matched “involved”(7.41 [6.1°] vs 1.44 [4.8]°; η2 = .34) and “uninvolved” (9.59 [8.5°] vs 2.16 [5.6°]; η2 = .31) limbs, with a greater fractal dimension of the center-of-pressure path (involved limb = 1.39 [0.16°] vs 1.25 [0.14°]; uninvolved limb = 1.37 [0.21°] vs 1.23 [0.14°]). Bilateral impairment in postural control strategies present following a first time acute lateral ankle sprain.
      799Scopus© Citations 40
  • Publication
    Single-leg drop landing motor control strategies following acute ankle sprain injury
    No research currently exists investigating the effect of acute injury on single-limb landing strategies. The aim of the current study was to analyse the coordination strategies of participants in the acute phase of lateral ankle sprain (LAS) injury. Thirty-seven participants with acute, first-time, LAS and nineteen uninjured participants completed a single-leg drop landing task (DL) on both limbs. 3-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment of force) data were acquired for the joints of the lower extremity, from 200ms pre-initial contact (IC) to 200ms post IC. The peak magnitude of the vertical component of the ground reaction force (GRF) was also computed. Injured participants displayed a bilateral increase in hip flexion, with altered transverse plane kinematic profiles at the knee and ankle for both limbs (p < 0.05). This coincided with a reduction in the net supporting flexor moment of the lower extremity (p < 0.05) and magnitude of the peak vertical GRF for the injured limb (21.82 ± 2.44 N/kg vs 24.09 ± 2.77 N/kg; p = 0.013) in injured participants compared to control participants. These results demonstrate that compensatory movement strategies are utilized by participants with acute LAS to successfully reduce the impact forces of landing.
    Scopus© Citations 35  1190