Now showing 1 - 5 of 5
  • Publication
    A physical impact of organic fouling layers on bacterial adhesion during nanofiltration
    Organic conditioning films have been shown to alter properties of surfaces, such as hydrophobicity and surface free energy. Furthermore, initial bacterial adhesion has been shown to depend on the conditioning film surface properties as opposed to the properties of the virgin surface. For the particular case of nanofiltration membranes under permeate flux conditions, however, the conditioning film thickens to form a thin fouling layer. This study hence sought to determine if a thin fouling layer deposited on a nanofiltration membrane under permeate flux conditions governed bacterial adhesion in the same manner as a conditioning film on a surface. Thin fouling layers (less than 50 μm thick) of humic acid or alginic acid were formed on Dow Filmtec NF90 membranes and analysed using Atomic Force Microscopy (AFM), confocal microscopy and surface energy techniques. Fluorescent microscopy was then used to quantify adhesion of Pseudomonas fluorescens bacterial cells onto virgin or fouled membranes under filtration conditions.It was found that instead of adhering on or into the organic fouling layer, the bacterial cells penetrated the thin fouling layer and adhered directly to the membrane surface underneath. Contrary to what surface energy measurements of the fouling layer would indicate, bacteria adhered to a greater extent onto clean membranes (24 ± 3% surface coverage) than onto those fouled with humic acid (9.8 ± 4%) or alginic acid (7.5 ± 4%). These results were confirmed by AFM measurements which indicated that a considerable amount of energy (10−7 J/μm) was dissipated when attempting to penetrate the fouling layers compared to adhering onto clean NF90 membranes (10−15 J/μm). The added resistance of this fouling layer was thusly seen to reduce the number of bacterial cells which could reach the membrane surface under permeate conditions. This research has highlighted an important difference between fouling layers for the particular case of nanofiltration membranes under permeate flux conditions and surface conditioning films which should be considered when conducting adhesion experiments under filtration conditions. It has also shown AFM to be an integral tool for such experiments.
      331Scopus© Citations 20
  • Publication
    Understanding particle deposition kinetics on NF membranes: A focus on micro-beads & membrane interactions at different environmental conditions
    The significance of nanofiltration membrane surface properties when interacting with microbeads with and without permeate flux was investigated. This was achieved by characterising the surface tension and zeta potential of micro-beads and NF90 membranes to determine the colloid–membrane interaction forces. Dynamic adhesion assays under different ionic strengths (0.1 M and 0.01 M) and pH (5, 7, and 9) were conducted. Experimental results showed that at high ionic strength, pH does not have a significant effect on adhesion rates, while at low ionic strength the adhesion rate increased at pH 7 (4.56 s−1 cm−2) compared to pH 5 and pH 9, with rates of 2.69 and 3.66 s−1 cm−2 respectively. A model was devised to predict colloidal adhesion onto membranes under increasing permeate flux conditions, taking into account all interaction forces. Model predictions indicate that drag force overwhelms all other colloid–membrane interaction forces when the permeate flux increases to 7.2 L h−1 m−2. This study suggests that altering membrane surface properties for the prevention of fouling may be limited in its success as an antifouling strategy.
      248Scopus© Citations 12
  • Publication
    The importance of laboratory water quality for studying initial bacterial adhesion during NF filtration processes
    Biofouling of nanofiltration (NF) and reverse osmosis (RO) membranes for water treatment has been the subject of increased research effort in recent years. A prerequisite for undertaking fundamental experimental investigation on NF and RO processes is a procedure called compaction. This involves an initial phase of clean water permeation at high pressures until a stable permeate flux is reached. However water quality used during the compaction process may vary from one laboratory to another. The aim of this study was to investigate the impact of laboratory water quality during compaction of NF membranes. A second objective was to investigate if the water quality used during compaction influences initial bacterial adhesion. Experiments were undertaken with NF270 membranes at 15 bar for permeate volumes of 0.5L, 2L, and 5L using MilliQ, deionized or tap water. Membrane autopsies were performed at each permeation point for membrane surface characterisation by contact angle measurements, profilometry, and scanning electron microscopy. The biological content of compacted membranes was assessed by direct epi-fluorescence observation following nucleic acid staining. The compacted membranes were also employed as substrata for monitoring the initial adhesion of Ps. fluorescens under dynamic flow conditions for 30 minutes at 5 minutes intervals. Compared to MilliQ water, membrane compaction using deionized and tap water led to decreases in permeate flux, increase in surface hydrophobicity and led to significant buildup of a homogenous fouling layer composed of both living and dead organisms (>10⁶−2). Subsequent measurements of bacterial adhesion resulted in cell loadings of 0.2×10⁵, 1.0×10⁵cells×cm−2 and 2.6×10⁵−2 for deionized, tap water and MilliQ water, respectively. These differences in initial cell adhesion rates demonstrate that choice of laboratory water can significantly impact the results of bacterial adhesion on NF membranes. Standardized protocols are therefore needed for the fundamental studies of bacterial adhesion and biofouling formation on NF and RO membrane. This can be implemented by first employing pure water during all membrane compaction proceduresand for the modelled feed solutions used in the experiment.
      979Scopus© Citations 24
  • Publication
    Disinfection of a polyamide nanofiltration membrane using ethanol
    It is imperative that nanofiltration membranes are disinfected before they are used for laboratory-scale bacterial adhesion or biofouling experiments, yet currently no suitable disinfection protocol exists. This study aimed to determine if an ethanol treatment at a minimum inhibitory concentration (MIC) could be used to effectively disinfect nanofiltration membranes without altering membrane properties which could affect research. Two strains of bacteria, Pseudomonas fluorescens and Staphylococcus sp., were exposed to a range of ethanol concentrations to determine the MIC required for a 4log10 reduction in bacteria. In parallel, ethanol's effects on the filtration, surface and mechanical properties of a Dow Filmtec NF90 membrane were analysed. A 1.5 hour treatment with 40% ethanol was shown to effectively disinfect the membrane without significantly affecting any of the membranes properties tested. This treatment protocol can now be safely used to disinfect the studied membrane prior to bacterial adhesion or biofouling experiments. This study also acts as a guideline for researchers using other membranes to determine a suitable disinfection protocol for their needs.
      828Scopus© Citations 27
  • Publication
    Nanofiltration and reverse osmosis surface topographical heterogeneities: do they matter for initial bacterial adhesion?
    The role of the physicochemical and surface properties of NF/RO membranes influencing bacterial adhesion has been widely studied. However, there exists a poor understanding of the potential role membrane topographical heterogeneities can have on bacterial adhesion. Heterogeneities on material surfaces have been shown to influence bacterial adhesion and biofilm development. The purpose of this study was therefore to investigate whether the presence of membrane topographical heterogeneities had a significant role during bacterial adhesion as this could significantly impact on how biofouling develops on membranes during NF/RO operation. An extensive study was devised in which surface topographical heterogeneities from two commercial membranes, NF270 and BW30, were assessed for their role in the adhesion of two model organisms of different geometrical shapes, Pseudomonas fluorescens and Staphylococcus epidermidis. The influence of cross-flow velocity and permeate flux was also tested, as well as the angle to which bacteria adhered compared to the flow direction. Bacterial adhesion onto the membranes and in their surface topographical heterogeneities was assessed using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), fluorescence microscopy and image analysis. Results showed that up to 30% of total adhered cells were found in membrane defect areas when defect areas only covered up to 13% of the membrane surface area. This suggests that topographical heterogeneities may play a significant role in establishing environmental niches during the early stages of biofilm development. Furthermore, no noticeable difference between the angle of cell attachment in defect areas compared to the rest of the membrane surface was found.
      386Scopus© Citations 16