Now showing 1 - 1 of 1
  • Publication
    Recommending twitter users to follow using content and collaborative filtering approaches
    Recently the world of the web has become more social and more real-time. Facebook and Twitter are perhaps the exemplars of a new generation of social, real-time web services and we believe these types of service provide a fertile ground for recommender systems research. In this paper we focus on one of the key features of the social web, namely the creation of relationships between users. Like recent research, we view this as an important recommendation problem for a given user, UT which other users might be recommended as followers/followees but unlike other researchers we attempt to harness the real-time web as the basis for profiling and recommendation. To this end we evaluate a range of different profiling and recommendation strategies, based on a large dataset of Twitter users and their tweets, to demonstrate the potential for effective and efficient followee recommendation.
      9828ScopusĀ© Citations 390