Now showing 1 - 3 of 3
  • Publication
    Slight compressibility and sensitivity to changes in Poisson's ratio
    (Wiley Blackwell (John Wiley & Sons), 2011-12-12) ; ; ;
    Finite element simulations of rubbers and biological soft tissue usually assume that the material being deformed is slightly compressible. It is shown here that, in shearing deformations, the corresponding normal stress distribution can exhibit extreme sensitivity to changes in Poisson's ratio. These changes can even lead to a reversal of the usual Poynting effect. Therefore, the usual practice of arbitrarily choosing a value of Poisson's ratio when numerically modelling rubbers and soft tissue will, almost certainly, lead to a significant difference between the simulated and actual normal stresses in a sheared block because of the difference between the assumed and actual value of Poisson's ratio. The worrying conclusion is that simulations based on arbitrarily specifying Poisson's ratio close to 1∕2 cannot accurately predict the normal stress distribution even for the simplest of shearing deformations. It is shown analytically that this sensitivity is caused by the small volume changes, which inevitably acy all deformations of rubber-like materials. To minimise these effects, great care should be exercised to accurately determine Poisson's ratio before simulations begin.
    Scopus© Citations 29  336
  • Publication
    Third- and fourth-order elasticities of biological soft tissues
    (Acoustical Society of America, 2010) ; ;
    In the theory of weakly nonlinear elasticity,Hamilton et al. [J. Acoust. Soc. Am.116, 41–44 (2004)] identified W=μI2+(A/3)I3+DI22 as the fourth-order expansion of the strain-energy density for incompressible isotropic solids. Subsequently, much effort focused on theoretical and experimental developments linked to this expression in order to inform the modeling of gels and soft biological tissues. However, while many soft tissues can be treated as incompressible, they are not in general isotropic, and their anisotropy is associated with the presence of oriented collagen fiber bundles. Here the expansion of W is carried up to fourth order in the case where there exists one family of parallel fibers in the tissue. The results are then applied to acoustoelasticity, with a view to determining the second- and third-order nonlinear constants by employing small-amplitude transverse waves propagating in a deformed soft tissue.
    Scopus© Citations 46  275
  • Publication
    Third- and fourth-order constants of incompressible soft solids and the acousto-elastic effect
    (Acoustical Society of America, 2010) ; ;
    Acousto-elasticity is concerned with the propagation of small-amplitude waves in deformed solids. Results previously established for the incremental elastodynamics of exact non-linear elasticity are useful for the determination of third- and fourth-order elastic constants, especially in the case of incompressible isotropic soft solids, where the expressions are particularly simple. Specifically, it is simply a matter of expanding the expression for ρv2, where ρ is the mass density and v the wave speed, in terms of the elongation e of a block subject to a uniaxial tension. The analysis shows that in the resulting expression: ρv2=a+be+ce2, say, a depends linearly on μ; b on μ and A; and c on μ, A, and D, the respective second-, third, and fourth-order constants of incompressible elasticity, for bulk shear waves and for surface waves.
    Scopus© Citations 55  461