Now showing 1 - 2 of 2
  • Publication
    Inhomogeneous deformation of brain tissue during tension tests
    Mechanical characterization of brain tissue has been investigated extensively by various research groups over the past fifty years. These properties are particularly important for modelling Traumatic Brain Injury (TBI) by using finite element human head models to simulate brain injuries under different impact conditions. They are also increasingly important for computer assisted neurosurgery. During severe impact conditions, brain tissue experiences compression, tension and shear; however only limited tests have been performed in tension. Typically, cylindrical specimen are prepared and glued to platens to perform tensile tests which produce an inhomogeneous deformation field near the boundaries, thus contributing to higher magnitudes of stresses. In this research, we present the design and calibration of a High Rate Tension Device (HRTD) capable of performing tests up to a maximum strain rate of 90/s. We use experimental and numerical methods to investigate the effects of inhomogeneous deformation of porcine brain tissue during tension at different specimen thicknesses (4.0 – 14.0 mm), by performing tension tests at a strain rate of 30/s. One-term Ogden material parameters ( = 4395.0 Pa, a = - 2.8) were derived by performing an inverse finite element analysis to model all experimental data. A similar procedure was adopted to determine the Young’s modulus ( E = 11200 Pa) of the linear elastic regime. Based on this analysis, brain specimens of aspect ratio (diameter/thickness) S = 10/10 or lower (10/12, 10/13) are considered suitable for minimizing the effects of inhomogeneous deformation during tension tests.
    Scopus© Citations 37  511
  • Publication
    Mechanical characterization of brain tissue in tension at dynamic strain rates
    Mechanical characterization of brain tissue at high loading velocities is crucial for modeling Traumatic Brain Injury (TBI). During severe impact conditions, brain tissue experiences compression, tension and shear. Limited experimental data is available for brain
      618Scopus© Citations 167