Now showing 1 - 4 of 4
No Thumbnail Available
Publication

Inhomogeneous deformation of brain tissue during tension tests

2012-11, Rashid, Badar, Destrade, Michel, Gilchrist, M. D.

Mechanical characterization of brain tissue has been investigated extensively by various research groups over the past fifty years. These properties are particularly important for modelling Traumatic Brain Injury (TBI) by using finite element human head models to simulate brain injuries under different impact conditions. They are also increasingly important for computer assisted neurosurgery. During severe impact conditions, brain tissue experiences compression, tension and shear; however only limited tests have been performed in tension. Typically, cylindrical specimen are prepared and glued to platens to perform tensile tests which produce an inhomogeneous deformation field near the boundaries, thus contributing to higher magnitudes of stresses. In this research, we present the design and calibration of a High Rate Tension Device (HRTD) capable of performing tests up to a maximum strain rate of 90/s. We use experimental and numerical methods to investigate the effects of inhomogeneous deformation of porcine brain tissue during tension at different specimen thicknesses (4.0 – 14.0 mm), by performing tension tests at a strain rate of 30/s. One-term Ogden material parameters ( = 4395.0 Pa, a = - 2.8) were derived by performing an inverse finite element analysis to model all experimental data. A similar procedure was adopted to determine the Young’s modulus ( E = 11200 Pa) of the linear elastic regime. Based on this analysis, brain specimens of aspect ratio (diameter/thickness) S = 10/10 or lower (10/12, 10/13) are considered suitable for minimizing the effects of inhomogeneous deformation during tension tests.

No Thumbnail Available
Publication

Mechanical characterization of brain tissue in tension at dynamic strain rates

2014-05, Rashid, Badar, Destrade, Michel, Gilchrist, M. D.

Mechanical characterization of brain tissue at high loading velocities is crucial for modeling Traumatic Brain Injury (TBI). During severe impact conditions, brain tissue experiences compression, tension and shear. Limited experimental data is available for brain

No Thumbnail Available
Publication

Mechanical characterization of brain tissue in simple shear at dynamic strain rates

2013-12, Rashid, Badar, Destrade, Michel, Gilchrist, M. D.

During severe impact conditions, brain tissue experiences a rapid and complex deformation, which can be seen as a mixture of compression, tension and shear. Diffuse axonal injury (DAI) occurs in animals and humans when both the strains and strain rates exceed 10% and 10/s, respectively. Knowing the mechanical properties of brain tissue in shear at these strains and strain rates is thus of particular importance, as they can be used in finite element simulations to predict the occurrence of brain injuries under different impact conditions. However, very few studies in the literature provide this information. In this research, an experimental setup was developed to perform simple shear tests on porcine brain tissue at strain rates ≤120/s. The maximum measured shear stress at strain rates of 30, 60, 90 and 120/s was 1.15±0.25 kPa, 1.34±0.19 kPa, 2.19±0.225 kPa and 2.52±0.27 kPa, (mean±SD), respectively at the maximum amount of shear, K =1. Good agreement of experimental, theoretical (Ogden and Mooney–Rivlin mod)and numerical shear stresses was achieved (p =0.7866–0.9935). Specimen thickness effects (2.0–10.0 mm thick specimens) were also analyzed numerically and we found that there is no significant difference (p =0.9954) in the shear stress magnitudes, indicating a homogeneous deformation of the specimens during simple shear tests. Stress relaxation tests in simple shear were also conducted at different strain magnitudes (10–60% strain) with the average rise time of 14 ms. This allowed us to estimate elastic and viscoelastic parameters (initial shear modulus, μ=4942.0 Pa, and Prony parameters: g1=0.520, g2=0.3057, τ1=0.0264 s, and τ2=0.011 s) that can be used in FE software to analyze the non-linear viscoelastic behavior of brain tissue. This study provides new insight into the behavior in finite shear of brain tissue under dynamic impact conditions, which will assist in developing effective brain injury criteria and adopting efficient countermeasures against traumatic brain injury.

No Thumbnail Available
Publication

Determination of friction coefficient in unconfined compression of brain tissue

2012-10, Rashid, Badar, Destrade, Michel, Gilchrist, M. D.

Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental–computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s.