Now showing 1 - 2 of 2
  • Publication
    Wnt signalling is a bi-directional vulnerability of cancer cells
    Wnt signalling is involved in the formation, metastasis and relapse of a wide array of cancers. However, there is ongoing debate as to whether activation or inhibition of the pathway holds the most promise as a therapeutic treatment for cancer, with conflicting evidence from a variety of tumour types. We show that Wnt/β-catenin signalling is a bi-directional vulnerability of neuroblastoma, malignant melanoma and colorectal cancer, with hyper-activation or repression of the pathway both representing a promising therapeutic strategy, even within the same cancer type. Hyper-activation directs cancer cells to undergo apoptosis, even in cells oncogenically driven by β-catenin. Wnt inhibition blocks proliferation of cancer cells and promotes neuroblastoma differentiation. Wnt and retinoic acid co-treatments synergise, representing a promising combination treatment for MYCN-amplified neuroblastoma. Additionally, we report novel cross-talks between MYCN and β-catenin signalling, which repress normal β-catenin mediated transcriptional regulation. A β-catenin target gene signature could predict patient outcome, as could the expression level of its DNA binding partners, the TCF/LEFs. This β-catenin signature provides a tool to identify neuroblastoma patients likely to benefit from Wnt-directed therapy. Taken together, we show that Wnt/β-catenin signalling is a bi-directional vulnerability of a number of cancer entities, and potentially a more broadly conserved feature of malignant cells.
      396Scopus© Citations 27
  • Publication
    GSK3 inhibitors regulate MYCN mRNA levels and reduce neuroblastoma cell viability through multiple mechanisms including p53 and Wnt signalling
    Neuroblastoma is an embryonal tumor accounting for approximately 15% of childhood cancer deaths. There exists a clinical need to identify novel therapeutic targets, particularly for treatment-resistant forms of neuroblastoma. Therefore, we investigated the role of the neuronal master regulator GSK3 in controlling neuroblastoma cell fate. We identified novel GSK3-mediated regulation of MYC (c-MYC and MYCN) mRNA levels, which may have implications for numerous MYC-driven cancers. In addition, we showed that certain GSK3 inhibitors induced large-scale cell death in neuroblastoma cells, primarily through activating apoptosis. mRNA-seq of GSK3 inhibitor–treated cells was performed and subsequent pathway analysis revealed that multiple signaling pathways contributed to the loss of neuroblastoma cell viability. The contribution of two of the signaling pathways highlighted by the mRNA-seq analysis was functionally validated. Inhibition of the p53 tumor suppressor partly rescued the cell death phenotype, whereas activation of canonical Wnt signaling contributed to the loss of viability, in a p53-independent manner. Two GSK3 inhibitors (BIO-acetoxime and LiCl) and one small-molecule Wnt agonist (Wnt Agonist 1) demonstrated therapeutic potential for neuroblastoma treatment. These inhibitors reduced the viability of numerous neuroblastoma cell lines, even those derived from high-risk MYCN-amplified metastatic tumors, for which effective therapeutics are currently lacking. Furthermore, although LiCl was lethal to neuroblastoma cells, it did not reduce the viability of differentiated neurons. Taken together our data suggest that these small molecules may hold potential as effective therapeutic agents for the treatment of neuroblastoma and other MYC-driven cancers.
      1924Scopus© Citations 69