Now showing 1 - 2 of 2
  • Publication
    Towards the development of a novel construction solid waste (CSW) based constructed wetland system for tertiary treatment of secondary sewage effluents
    This study was conducted to examine the possibility of using construction solid waste (CSW), an inevitable by-product of the construction and demolition process, as the main substrate in a laboratory scale multi-stage constructed wetland system (CWs) to improve phosphorus (P) removal from secondary sewage effluent. A tidal-flow operation strategy was employed to enhance the wetland aeration. This will stimulate aerobic biological processes and benefit the organic pollutants decomposition and nitrification process for ammoniacal-nitrogen (NH4+-N) removal. The results showed that the average P concentration in the secondary sewage effluent was reduced from 1.90 mg-P/L to 0.04 mg-P/L. CSW presents excellent P removal performance. The average NH4+-N concentration was reduced from 9.94 mg-N/L to 1.0 mg-N/L through nitrification in the system. The concentration of resultant nitrite and nitrate in the effluent of the CSW based CWs ranged from 0.1 to 2.4 mg-N/L and 0.01 to 0.8 mg-N/L, respectively. The outcome of this study has shown that CSW can be successfully used to act as main substrate in CWs. The application of CSW based CWs on improving N and P removals from secondary sewage effluent presents a win-win scenario. Such the reuse of CSW will benefit both the CSW disposal and nutrient control from wastewater. More significantly, such the application can transfer the CSW from a ‘waste’ to ‘useful’ material and can ease the pressure of construction waste solid management. Meanwhile, the final effluent from the CSW-based CWs can be used as non-potable water source in landscape irrigation, agriculture and industrial process.
    Scopus© Citations 6  905
  • Publication
    Hierarchical parameterization and compression-based object modelling of high net: gross but poorly amalgamated deep-water lobe deposits
    (Geological Society of London, 2020-01-27) ; ; ;
    Deepwater lobe deposits are arranged hierarchically and can be characterized by high net:gross ratios but poor sand connectivity due to thin but laterally extensive shale layers. This heterogeneity makes them difficult to represent in standard full-field object-based models, since the sands in an object-based model are not stacked compensationally and become connected at a low net:gross ratio. The compression algorithm allows generation of low connectivity object-based models at high net:gross ratios, by including the net: gross and amalgamation ratios as independent input parameters. Object-based modelling constrained by the compression algorithm has been included in a recursive workflow, permitting generation of realistic models of hierarchical lobe deposits. Representative dimensional and stacking parameters collected at four different hierarchical levels have been used to constrain a 250 m thick, 14 km2 model that includes hierarchical elements ranging from 20 cm thick sand beds to 30+ m thick lobe complexes. Sand beds and the fine-grained units are represented explicitly in the model, and the characteristic facies associations often used to parameterize lobe deposits are emergent from the modelling process. The model is subsequently resampled without loss of accuracy for flow simulation, and results show clearly the influence of the hierarchical heterogeneity on drainage and sweep efficiency during a water-flood simulation.
    Scopus© Citations 8  377