Now showing 1 - 1 of 1
  • Publication
    Fibril size-dependent control of polar ordering in type I collagen membranes
    The most abundant protein in the human body, collagen, is widely used in tissue culture and engineering applications, spanning from substrate functionalization to fibrillar architectures and three-dimensional constructs. Collagen piezoelectricity provides an opportunity to exploit electromechanical coupling in these applications, wherein an applied mechanical stress generates charge, which might influence ion screening, protein absorption, and cell response. In type I collagen, the polarization direction follows the fibril orientation. Thus, control of fibril orientation and size in a collagen film or membrane may provide control of the polarization, enabling the creation of regions of uniform polarization direction. Here, aligned substrate-supported type I collagen membranes having fibril sizes from ∼100-500 nm are deposited using different osmotic concentrations (90, 190, and 290 mOsm/kg, from low to high ionic strength) to investigate the correlation between fibril size and piezoelectric properties. Lateral piezoresponse force microscopy is used to show that regions of uniform polarization orientation, as determined through 2D correlation analysis, decrease with increasing fibril size.
      126