Now showing 1 - 3 of 3
  • Publication
    Conditioning of aluminium-based water treatment sludge with Fenton’s reagent : effectiveness and optimising study to improve dewaterability
    Alternative conditioning of aluminium-based drinking water treatment sludge using Fenton reagent (Fe2+/H2O2) was examined in this study. Focuses were placed on effectiveness and factors to affect such novel application of Fenton process. Experiments have demonstrated that considerable improvement of alum sludge dewaterability evaluated by capillary suction time (CST) can be obtained at the relative low concentrations of Fenton reagent. A Box-Behnken experimental design based on the response surface methodology was applied to evaluate the optimum of the influencing variables, i.e. iron concentration, hydrogen peroxide concentration and pH. The optimal values for Fe2+, H2O2, and pH are 21 mg g-1 DS-1(dry solids), 105 mg g-1 DS-1 and 6, respectively, at which the CST reduction efficiency of 48±3 % can be achieved, this agreed with that predicted by an established polynomial model in this study.
    Scopus© Citations 126  1990
  • Publication
    Photo-catalytic degradation of an oil-water emulsion using the photo-Fenton treatment process : effects and statistical optimization
    The application of advanced oxidation processes (AOPs) to the treatment of an effluent contaminated with hydrocarbon oils was investigated. The AOPs conducted were Fe2+/H2O2 (Fenton’s reagent), Fe2+/H2O2/UV (Photo-Fenton’s reagent) and UV-photolysis. These technologies utilize the very strong oxidizing power of hydroxyl radicals to oxidize organic compounds to harmless end products such as CO2 and H2O. A synthetic wastewater generated by emulsifying diesel oil and water was used. This wastewater might simulate, for example, a waste resulting from a hydrocarbon oil spill, onto which detergent was sprayed. The experiments utilising the Photo-Fenton treatment method with an artificial UV source, coupled with Fenton’s reagent, suggest that the hydrocarbon oil is readily degradable, but that the emulsifying agent is much more resistant to degradation. The results showed that the COD (chemical oxygen demand) removal rate was affected by the Photo-Fenton parameters (Fe2+, H2O2 concentrations and the initial pH) of the aqueous solution. In addition, the applicability of the treatment method to a ‘real’ wastewater contaminated with hydrocarbon oil is demonstrated. The ‘real’ wastewater was sourced at a nearby car-wash facility located at a petroleum filling station and the experimental results demonstrate the effectiveness of the treatment method in this case. A statistical analysis of the experimental data using the Statistical Analysis System (SAS) and the response surface methodology (RSM) based on the experimental design was applied to optimize the Photo-Fenton parameters (concentrations of Fe2+, H2O2 and initial pH) and to maximize the COD removal rate (more than 70%).
    Scopus© Citations 48  3732
  • Publication
    Exploitation of Fenton and Fenton-like reagents as alternative conditioners for alum sludge conditioning
    The use of Fenton’s reagent (Fe2+/H2O2) and Fenton-like reagents containing transition metals of Cu(II), Zn(II), Co(II) and Mn(II) for an alum sludge conditioning to improve its dewaterability was investigated in this study. The results obtained were compared with those obtained from conditioning the same alum sludge using cationic and anionic polymers. Experimental results show that Fenton’s reagent was the best among the Fenton and Fenton-like reagents for the alum sludge conditioning. A considerable effectiveness of capillary suction time (CST) reduction efficiency of 47% can be achieved under test conditions of Fe2+/H2O2 = 20/125 mg/gDS (Dry Solids) and pH = 6.0. The observation of floc-like particles after Fenton’s reagent conditioning of alum sludge suggests that the mechanism of Fenton’s reagent conditioning was different with that of polymer conditioning. In spite of the less efficiency in CST reduction of Fenton’s reagent in alum sludge conditioning compared with that of polymer conditioning, is less than that of polymer conditioning. This study provided an example of proactive treatment engineering which is aimed at seeking a safe alternative to the use of polymers in sludge conditioning towards achieving a more sustainable sludge management strategy.
    Scopus© Citations 47  1824