Now showing 1 - 2 of 2
  • Publication
    The Importance of Real-World Validation of Machine Learning Systems in Wearable Exercise Biofeedback Platforms: A Case Study
    Machine learning models are being utilized to provide wearable sensor-based exercise biofeedback to patients undertaking physical therapy. However, most systems are validated at a technical level using lab-based cross validation approaches. These results do not necessarily reflect the performance levels that patients and clinicians can expect in the real-world environment. This study aimed to conduct a thorough evaluation of an example wearable exercise biofeedback system from laboratory testing through to clinical validation in the target setting, illustrating the importance of context when validating such systems. Each of the various components of the system were evaluated independently, and then in combination as the system is designed to be deployed. The results show a reduction in overall system accuracy between lab-based cross validation (>94%), testing on healthy participants (n = 10) in the target setting (>75%), through to test data collected from the clinical cohort (n = 11) (>59%). This study illustrates that the reliance on lab-based validation approaches may be misleading key stakeholders in the inertial sensor-based exercise biofeedback sector, makes recommendations for clinicians, developers and researchers, and discusses factors that may influence system performance at each stage of evaluation.
      25Scopus© Citations 8
  • Publication
    Patient Involvement With Home-Based Exercise Programs: Can Connected Health Interventions Influence Adherence?
    Adherence to home exercise in rehabilitation is a significant problem, with estimates of nonadherence as high as 50%, potentially having a detrimental effect on clinical outcomes. In this viewpoint, we discuss the many reasons why patients may not adhere to a prescribed exercise program and explore how connected health technologies have the ability to offer numerous interventions to enhance adherence; however, it is hard to judge the efficacy of these interventions without a robust measurement tool. We highlight how well-designed connected health technologies, such as the use of mobile devices, including mobile phones and tablets, as well as inertial measurement units, provide us with the opportunity to better support the patient and clinician, with a data-driven approach that incorporates features designed to increase adherence to exercise such as coaching, self-monitoring and education, as well as remotely monitor adherence rates more objectively.
      704Scopus© Citations 180