Now showing 1 - 3 of 3
  • Publication
    From Richardson to early numerical weather prediction
    (Cambridge University Press, 2010-12)
    The development of computer models for numerical simulation of the atmosphere and oceans is one of the great scientific triumphs of the past fifty years. These models have added enormously to our understanding of the complex processes in the atmosphere and oceans. The consequences for humankind of ongoing climate change will be far-reaching. Earth system models are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. However, advances on several fronts were necessary before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular observations of the free atmosphere provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the calculations required to predict the changes in the weather. In this chapter, we trace the history of computer forecasting from Richardson’s prodigious manual computation, through the ENIAC (Electronic Numerical Integrator and Computer) integrations to the early days of operational numerical weather prediction and climate modeling. The useful range of deterministic prediction is increasing by about one day each decade. We set the scene for the story of the remarkable progress in weather forecasting and in climate modeling over the past fifty years, which will be treated in subsequent chapters.
      371
  • Publication
    Stokes's Fundamental Contributions to Fluid Dynamics
    (Oxford University Press, 2019-06-27)
    George Gabriel Stokes was one of the giants of hydrodynamics in the nineteenth century. He made fundamental mathematical contributions to fluid dynamics that had profound practical consequences. The basic equations formulated by him, the Navier-Stokes equations, are capable of describing fluid flows over a vast range of magnitudes. They play a central role in numerical weather prediction, in the simulation of blood flow in the body and in countless other important applications. In this chapter we put the primary focus on the two most important areas of Stokes’s work on fluid dynamics, the derivation of the Navier-Stokes equations and the theory of finite amplitude oscillatory water waves. Stokes became an undergraduate at Cambridge in 1837. He was coached by the ‘Senior Wrangler-maker’, William Hopkins and, in 1841, Stokes was Senior Wrangler and first Smith’s Prizeman. It was following a suggestion of Hopkins that Stokes took up the study of hydrodynamics, which was at that time a neglected area of study in Cambridge. Stokes was to make profound contributions to hydrodynamics, his most important being the rigorous establishment of the mathematical equations for fluid motions, and the theoretical explanation of a wide range of phenomena relating to wave motions in water.
      344
  • Publication
    Initialization
    (Springer, 2010-08) ;
    The spectrum of atmospheric motions is vast, encompassing phenomena having periods ranging from seconds to millennia. The motions of interest to the forecaster typically have time-scales of a day or longer, but the mathematical models used for numerical prediction describe a broader span of dynamical features than those of direct concern. For many purposes these higher frequency components can be regarded as noise contaminating the motions of meteorological interest. The elimination of this noise is achieved by adjustment of the initial fields, a process called initialization.
      177Scopus© Citations 16