Now showing 1 - 1 of 1
No Thumbnail Available
Publication

Microbial biotransformation of aryl sulfanylpentafluorides

2014-01, Kavanagh, Emma, Winn, Michael, Nic Gabhann, Cliona, O'Connor, Neil K., Beier, Petr, Murphy, Cormac D.

We report, for the first time, the biotransformation of potential pollutants bearing the pentafluorosulfanyl (SF5-) functional group in a fungus and bacteria. Cunninghamella elegans transformed p-methoxy phenyl SF5 via demethylation; Pseudomonas knackmussii and P. pseudoalcaligenes KF707 transformed amino-, hydroxyamino- and diamino- substituted phenyl SF5, forming the N-acetylated derivatives as the main product. Cell-free extract of Streptomyces griseus transformed 4-amino-3-hydroxy-phenyl SF5 to the N-acetylated derivative in the presence of acetyl CoA, confirming that an N-acetyltransferase is responsible for the bacterial biotransformations. Approximately 25 % of drugs and 30 % of agrochemicals contain fluorine, and the trifluoromethyl group is a prominent feature of many of these since it improves lipophilicity and stability. The pentafluorosulfanyl substituent is seen as an improvement on the trifluoromethyl group and research efforts are underway to develop synthetic methods to incorporate this moiety into biologically active compounds. It is important to determine the potential environmental impact of these compounds, including the potential biotransformation reactions that may occur when they are exposed to microorganisms.