Now showing 1 - 2 of 2
  • Publication
    Self-Balancing Decentralized Distributed Platform for Urban Traffic Simulation
    Microscopic traffic simulation is the most accurate tool for predictive analytics in urban environments. However, the amount of workload (i.e., cars simulated simultaneously) can be challenging for classical systems, particularly for scenarios requiring faster than real-time processing (e.g., for emergency units having to make quick decisions on traffic management). This challenge can be tackled with distributed simulations by sharing the load between simulation engines running on different computing nodes, hence balancing the processing power required. This paper studies the performance of dSUMO, i.e., a distributed microscopic traffic simulator. dSUMO is fully decentralized and can dynamically balance the workload between its computing nodes, hence showing important improvements against classical, centralized and not dynamic, solutions.
      538Scopus© Citations 11
  • Publication
    Synchronisation for Dynamic Load Balancing of Decentralised Conservative Distributed Simulation
    (Association for Computing Machinery, 2014-05-21) ; ;
    Synchronisation mechanisms are essential in distributed simulation. Some systems rely on central units to control the simulation but central units are known to be bottlenecks [10]. If we want to avoid using a central unit to optimise the simulation speed, we lose the capacity to act on the simulation at a global scale. Being able to act on the entire simulation is an important feature which allows to dynamically load-balance a distributed simulation. While some local partitioning algorithms exist [12], their lack of global view reduces their efficiency. Running a global partitioning algorithm without central unit requires a synchronisation of all logical processes (LPs) at the same step.We introduce in this paper two algorithms allowing to synchronise logical processes in a distributed simulation without any central unit. The first algorithm requires the knowledge of some topological properties of the network while the second algorithm works without any requirement. The algorithms are detailed and compared against each other. An evaluation shows the benefits of using a global dynamic load-balancing for distributed simulations.
      289Scopus© Citations 5