Now showing 1 - 3 of 3
  • Publication
    FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1
    The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.
      294Scopus© Citations 74
  • Publication
    REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia
    The hypoxia-inducible factor (HIF) is a key regulator of the cellular response to hypoxia which promotes oxygen delivery and metabolic adaptation to oxygen deprivation. However, the degree and duration of HIF-1a expression in hypoxia must be carefully balanced within cells in order to avoid unwanted side effects associated with excessive activity. The expression of HIF-1a mRNA is suppressed in prolonged hypoxia, suggesting that the control of HIF1A gene transcription is tightly regulated by negative feedback mechanisms. Little is known about the resolution of the HIF-1a protein response and the suppression of HIF-1a mRNA in prolonged hypoxia. Here, we demonstrate that the Repressor Element 1-Silencing Transcription factor (REST) binds to the HIF-1a promoter in a hypoxia-dependent manner. Knockdown of REST using RNAi increases the expression of HIF-1a mRNA, protein and transcriptional activity. Furthermore REST knockdown increases glucose consumption and lactate production in a HIF-1a- (but not HIF-2a-) dependent manner. Finally, REST promotes the resolution of HIF-1a protein expression in prolonged hypoxia. In conclusion, we hypothesize that REST represses transcription of HIF-1a in prolonged hypoxia, thus contributing to the resolution of the HIF-1a response.
      280Scopus© Citations 53
  • Publication
    REST is a hypoxia-responsive transcriptional repressor
    Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia.
      352Scopus© Citations 54