Now showing 1 - 10 of 21
  • Publication
    In vitro study of the interaction of heregulin-functionalized magnetic-optical nanorods with MCF7 and MDA-MB- 231 cells
    Multifunctional nanoparticles that actively target specific cells are promising tools for cancer diagnosis and therapy. In this article we review the synthesis and surface chemistry of Fe–Au nanorods and their characterization using microscopy. The diameter of the rods used in this study was selected to be 150–200 nm so that they did not enter the cells. The 80 nm-long Au tips of the nanorods were functionalized with heregulin (HRG), and the micron-long Fe portion was coated with a poly(ethylene glycol) monolayer to minimize non-specific interactions. Nanorods functionalized with HRG were found to preferentially bind to MCF7 cells that express high levels of the receptor tyrosine-protein kinase ErbB2/3. Magnetic tweezers measurements were used to characterize the kinetic properties of the bond between the HRG on the rods and ErbB2/3 on the surface of the cells. The strong magnetization of Fe–Au nanorods makes them excellent candidates for in-vitro and in-vivo imaging, and magnetic therapeutic applications targeting cancer cells in circulation.
      652Scopus© Citations 2
  • Publication
    An Integrated Global Analysis of Compartmentalized HRAS Signaling
    Modern omics technologies allow us to obtain global information on different types of biological networks. However, integrating these different types of analyses into a coherent framework for a comprehensive biological interpretation remains challenging. Here, we present a conceptual framework that integrates protein interaction, phosphoproteomics, and transcriptomics data. Applying this method to analyze HRAS signaling from different subcellular compartments shows that spatially defined networks contribute specific functions to HRAS signaling. Changes in HRAS protein interactions at different sites lead to different kinase activation patterns that differentially regulate gene transcription. HRAS-mediated signaling is the strongest from the cell membrane, but it regulates the largest number of genes from the endoplasmic reticulum. The integrated networks provide a topologically and functionally resolved view of HRAS signaling. They reveal distinct HRAS functions including the control of cell migration from the endoplasmic reticulum and TP53-dependent cell survival when signaling from the Golgi apparatus.
    Scopus© Citations 32  444
  • Publication
    Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches
    Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches.
      387Scopus© Citations 121
  • Publication
    Mammalian protein expression noise: scaling principles and the implications for knockdown experiments
    The abundance of a particular protein varies both over time within a single mammalian cell and between cells of a genetically identical population. Here, we investigate the properties of such noisy protein expression in mammalian cells by combining theoretical and experimental approaches. The gamma distribution model is well-known to describe cell-to-cell variability in protein expression in a variety of common scenarios. This model predicts, and experiments show, that when protein levels are manipulated by altering transcription rates or mRNA half-life, protein expression noise, defined as the squared coefficient of variation, is constant. In contrast, we also demonstrate that when protein levels are manipulated by changing protein half-life, as mean levels increase, noise decreases. Thus, in mammalian cells, the scaling relationship between mean protein levels and expression noise depends on how mean levels are perturbed. Therefore it may be important to consider how common experimental manipulations of pro in expression affect not only mean levels, but also noise levels. In the context of knockdown experiments, natural cell-tocell variability in protein expression implies that a particular cell from the knockdown population may have higher protein levels than a cell from the control population. Simulations and experimental data suggest that approximately three-fold knockdown in mean expression levels can reduce such so-called “overlap probability” to less than ~10%. This has implications for the interpretation of knockdown experiments when the readout is a single cell measure.
      487Scopus© Citations 10
  • Publication
    Autophosphorylation on S614 inhibits the activity and the transforming potential of BRAF
    The BRAF proto-oncogene serine/threonine-protein kinase, known as BRAF, belongs to the RAF kinase family. It regulates the MAPK/ERK signalling pathway affecting several cellular processes such as growth, survival, differentiation, and cellular transformation. BRAF is mutated in ~8% of all human cancers with the V600E mutation constituting ~90% of mutations. Here, we have used quantitative mass spectrometry to map and compare phosphorylation site patterns between BRAF and BRAF V600E. We identified sites that are shared as well as several quantitative differences in phosphorylation abundance. The highest difference is phosphorylation of S614 in the activation loop which is ~5fold enhanced in BRAF V600E. Mutation of S614 increases the kinase activity of both BRAF and BRAF V600E and the transforming ability of BRAF V600E. The phosphorylation of S614 is mitogen inducible and the result of autophosphorylation. These data suggest that phosphorylation at this site is inhibitory, and part of the physiological shut-down mechanism of BRAF signalling.
    Scopus© Citations 5  418
  • Publication
    Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function
    Hippo pathway downstream effectors Yap and Taz play key roles in cell proliferation and regeneration, regulating gene expression especially via Tead transcription factors. To investigate their role in skeletal muscle stem cells, we analyzed Taz in vivo and ex vivo in comparison with Yap. Small interfering RNA knockdown or retroviral-mediated expression of wild-type human or constitutively active TAZ mutants in satellite cells showed that TAZ promoted proliferation, a function shared with YAP. However, at later stages of myogenesis, TAZ also enhanced myogenic differentiation of myoblasts, whereas YAP inhibits such differentiation. Functionally, while muscle growth was mildly affected in Taz (gene Wwtr1–/–) knockout mice, there were no overt effects on regeneration. Conversely, conditional knockout of Yap in satellite cells of Pax7Cre-ERT2/+: Yapfl°x/fl°x:Rosa26Lacz mice produced a regeneration deficit. To identify potential mechanisms, microarray analysis showed many common TAZ/YAP target genes, but TAZ also regulates some genes independently of YAP, including myogenic genes such as Pax7, Myf5, and Myod1 (ArrayExpress–E-MTAB-5395). Proteomic analysis revealed many novel binding partners of TAZ/YAP in myogenic cells, but TAZ also interacts with proteins distinct from YAP that are often involved in myogenesis and aspects of cytoskeleton organization (ProteomeXchange–PXD005751). Neither TAZ nor YAP bind members of the Wnt destruction complex but both regulated expression of Wnt and Wnt-cross talking genes with known roles in myogenesis. Finally, TAZ operates through Tead4 to enhance myogenic differentiation. In summary, Taz and Yap have overlapping functions in promoting myoblast proliferation but Taz then switches to enhance myogenic differentiation. Stem Cells 2017;35:1958–1972.
      206Scopus© Citations 84
  • Publication
    Dnmt3a and Dnmt3b Associate with Enhancers to Regulate Human Epidermal Stem Cell Homeostasis
    The genome-wide localization and function of endogenous Dnmt3a and Dnmt3b in adult stem cells are unknown. Here, we show that in human epidermal stem cells, the two proteins bind in a histone H3K36me3-dependent manner to the most active enhancers and are required to produce their associated enhancer RNAs. Both proteins prefer super-enhancers associated to genes that either define the ectodermal lineage or establish the stem cell and differentiated states. However, Dnmt3a and Dnmt3b differ in their mechanisms of enhancer regulation: Dnmt3a associates with p63 to maintain high levels of DNA hydroxymethylation at the center of enhancers in a Tet2-dependent manner, whereas Dnmt3b promotes DNA methylation along the body of the enhancer. Depletion of either protein inactivates their target enhancers and profoundly affects epidermal stem cell function. Altogether, we reveal novel functions for Dnmt3a and Dnmt3b at enhancers that could contribute to their roles in disease and tumorigenesis.
      337Scopus© Citations 147
  • Publication
    Nonlinear signalling networks and cell-to-cell variability transform external signals into broadly distributed or bimodal responses
    We show theoretically and experimentally a mechanism behind the emergence of wide or bimodal protein distributions in biochemical networks with nonlinear input–output characteristics (the dose–response curve) and variability in protein abundance. Large cell-to-cell variation in the nonlinear dose–response characteristics can be beneficial to facilitate two distinct groups of response levels as opposed to a graded response. Under the circumstances that we quantify mathematically, the two distinct responses can coexist within a cellular population, leading to the emergence of a bimodal protein distribution. Using flow cytometry, we demonstrate the appearance of wide distributions in the hypoxia-inducible factor-mediated response network in HCT116 cells. With help of our theoretical framework, we perform a novel calculation of the magnitude of cell-to-cell heterogeneity in the dose–response obtained experimentally.
      446Scopus© Citations 21
  • Publication
    FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1
    The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.
      294Scopus© Citations 74
  • Publication
    Mechanochemical Stimulation of MCF7 Cells with Rod-Shaped Fe-Au Janus Particles Induces Cell Death through Paradoxical Hyperactivation of ERK
    Multifunctional nanoparticles that actively target-specific tissues are studied for cancer diagnosis and treatment. Magnetically and optically active particles are of particular interest because they enable multiple imaging modalities and physically modulated therapies, such as magnetic hyperthermia. Fe–Au nanorods are synthesized that have a long iron segment, coated with polyethylene glycol, and a short gold tip functionalized with heregulin (HRG), a known ligand of ErbB family of receptors. HRG–nanorods preferentially target MCF7 cells relative to MDA-MB-231 cells, as demonstrated in a novel microfluidics device. Targeting rates of these classical breast cancer cells correlate with their differential expression of ErbB2/3 receptors. HRG–nanorod binding stimulates the extracellular signal-regulated kinase 1/2 (ERK) phosphorylation in MCF7 cells. The increase in ERK phosphorylation is linked to 'active zones,' dynamic regions in the cell periphery, which exhibit higher rates of particle binding than the rest of the cell. Periodically stretching cells using magnetic tweezers further activates ERK, which leads to cell death in cells co-treated with B-Raf inhibitors, through ERK hyperactivation. Although to a lesser extent, cell death is also achieved through magnetic hyperthermia. These results demonstrate nanoscale targeting and localized mechanochemical treatment of specific cancer cell lines based on their receptor expression using multifunctional nanoparticles.
      803Scopus© Citations 28