Now showing 1 - 10 of 10
  • Publication
    A physical impact of organic fouling layers on bacterial adhesion during nanofiltration
    Organic conditioning films have been shown to alter properties of surfaces, such as hydrophobicity and surface free energy. Furthermore, initial bacterial adhesion has been shown to depend on the conditioning film surface properties as opposed to the properties of the virgin surface. For the particular case of nanofiltration membranes under permeate flux conditions, however, the conditioning film thickens to form a thin fouling layer. This study hence sought to determine if a thin fouling layer deposited on a nanofiltration membrane under permeate flux conditions governed bacterial adhesion in the same manner as a conditioning film on a surface. Thin fouling layers (less than 50 μm thick) of humic acid or alginic acid were formed on Dow Filmtec NF90 membranes and analysed using Atomic Force Microscopy (AFM), confocal microscopy and surface energy techniques. Fluorescent microscopy was then used to quantify adhesion of Pseudomonas fluorescens bacterial cells onto virgin or fouled membranes under filtration conditions.It was found that instead of adhering on or into the organic fouling layer, the bacterial cells penetrated the thin fouling layer and adhered directly to the membrane surface underneath. Contrary to what surface energy measurements of the fouling layer would indicate, bacteria adhered to a greater extent onto clean membranes (24 ± 3% surface coverage) than onto those fouled with humic acid (9.8 ± 4%) or alginic acid (7.5 ± 4%). These results were confirmed by AFM measurements which indicated that a considerable amount of energy (10−7 J/μm) was dissipated when attempting to penetrate the fouling layers compared to adhering onto clean NF90 membranes (10−15 J/μm). The added resistance of this fouling layer was thusly seen to reduce the number of bacterial cells which could reach the membrane surface under permeate conditions. This research has highlighted an important difference between fouling layers for the particular case of nanofiltration membranes under permeate flux conditions and surface conditioning films which should be considered when conducting adhesion experiments under filtration conditions. It has also shown AFM to be an integral tool for such experiments.
    Scopus© Citations 22  431
  • Publication
    The significance of calcium ions on Pseudomonas fluorescens biofilms – a structural and mechanical study
    The purpose of this study was to investigate the effects of calcium ions on the structural and mechanical properties of Pseudomonas fluorescens biofilms grown for 48 h. Advanced investigative techniques such as confocal laser scanning microscopy and atomic force spectroscopy were employed to characterize biofilm structure as well as biofilm mechanical properties following growth at different calcium concentrations. The presence of calcium during biofilm development led to higher surface coverage with distinct structural phenotypes in the form of a granular and heterogeneous surface, compared with the smoother and homogeneous biofilm surface in the absence of calcium. The presence of calcium also increased the adhesive nature of the biofilm, while reducing its elastic properties. These results suggest that calcium ions could have a functional role in biofilm development and have practical implications, for example, in analysis of biofouling in membrane-based water-treatment processes such as nanofiltration or reverse osmosis where elevated calcium concentrations may occur at the solid–liquid interface.
    Scopus© Citations 34  488
  • Publication
    Antifouling activity of enzyme-functionalized silica nanobeads
    The amelioration of biofouling in industrial processing equipment is critical for performance and reliability. While conventional biocides are effective in biofouling control, they are potentially hazardous to the environment and in some cases corrosive to materials. Enzymatic approaches have been shown to be effective and can overcome the disadvantages of traditional biocides, however they are typically uneconomic for routine biofouling control. The aim of this study was to design a robust and reusable enzyme-functionalized nano-bead system having biofilm dispersion properties. This work describes the biochemical covalent functionalization of silica-based nanobeads (hereafter referred to as Si-NanoB) with Proteinase K (PK). Results showed that PK-functionalized Si-NanoB are effective in dispersing both protein-based model biofilms and structurally altering Pseudomonas fluorescens biofilms, with significant decreases in surface coverage and thickness of 30.1% and 38.85%, respectively, while increasing surface roughness by 19 % following 24 h treatments on bacterial biofilms. This study shows that enzyme-functionalized nanobeads may potentially be an environmentally friendly and cost effective alternative to pure enzyme and chemical treatments.
    Scopus© Citations 18  395
  • Publication
    The effects of extrinsic factors on the structural and mechanical properties of Pseudomonas fluorescens biofilms: A combined study of nutrient concentrations and shear conditions
    The growth of biofilms on surfaces is a complicated process influenced by several environmental factors such as nutrient availability and fluid shear. In this study, combinations of growth conditions were selected for the study of Pseudomonas fluorescens biofilms including as cultivation time (24- or 48 h), nutrient levels (1:1 or 1:10 King B medium), and shear conditions (75 RPM shaking, 0.4 mL min −1 or 0.7 mL min −1). The use of Confocal Laser Scanning Microscopy (CLSM) determined biofilm structure, while liquid-phase Atomic Force Microscopy (AFM) techniques resolved the mechanical properties of biofilms. Under semi-static conditions, high nutrient environments led to more abundant biofilms with three times higher EPS content compared to biofilms grown under low nutrient conditions. AFM results revealed that biofilms formed under these conditions were less stiff, as shown by their Young's modulus values of 2.35 ± 0.08 kPa, compared to 4.98 ± 0.02 kPa for that of biofilms formed under low nutrient conditions. Under dynamic conditions, however, biofilms exposed to low nutrient conditions and high shear rates led to more developed biofilms compared to other tested dynamic conditions. These biofilms were also found to be significantly more adhesive compared to their counterparts grown at higher nutrient conditions.
    Scopus© Citations 30  34
  • Publication
    Biofilm recruitment under nanofiltration conditions: the influence of resident biofilm structural parameters on planktonic cell invasion
    (Wiley, 2017-12-01) ;
    It is now generally accepted that biofouling is inevitable in pressure-driven membrane processes for water purification. A large number of published articles describe the development of novel membranes in an effort to address biofouling in such systems. It is reasonable to assume that such membranes, even those with antimicrobial properties, when applied in industrial-scale systems will experience some degree of biofouling. In such a scenario, an understanding of the fate of planktonic cells, such as those entering with the feed water, has important implications with respect to contact killing particularly for membranes with antimicrobial properties. This study thus sought to investigate the fate of planktonic cells in a model nanofiltration biofouling system. Here, the interaction between auto-fluorescent Pseudomonas putida planktonic cells and 7-day-old Pseudomonas fluorescens resident biofilms was studied under permeate flux conditions in a nanofiltration cross flow system. We demonstrate that biofilm cell recruitment during nanofiltration is affected by distinctive biofilm structural parameters such as biofilm depth.
    Scopus© Citations 1  256
  • Publication
    Comparison of biomass detachment from two different Pseudomonas spp. biofilms under constant shear conditions
    In the context of biofilm development, detachment is of practical importance when placed in a biofilm management perspective. The objective of the present study was to examine biofilm structure and biofilm detachment under controlled conditions for two distinct microorganisms grown under constant shear conditions. Detached biofilm biomass was regularly collected and analysed over the course of 72 h biofilm growth by Pseudomonas putida and Pseudomonas fluorescens cells, and biofilm structural development assessed using confocal microscopy. The two Pseudomonas spp., which had very similar specific growth rates in planktonic culture, presented notably different characteristics in terms of biofilm morphology but their detachment behaviours over time were very similar. These findings underline the intrinsic complexity of the detachment phenomenon.
    Scopus© Citations 4  353
  • Publication
    Upon impact: the fate of adhering Pseudomonas fluorescens cells during Nanofiltration
    Nanofiltration (NF) is a high-pressure membrane filtration process increasingly applied in drinking water treatment and water reuse processes. NF typically rejects divalent salts, organic matter, and micropollutants. However, the efficiency of NF is adversely affected by membrane biofouling, during which microorganisms adhere to the membrane and proliferate to create a biofilm. Here we show that adhered Pseudomonas fluorescens cells under high permeate flux conditions are met with high fluid shear and convective fluxes at the membrane-liquid interface, resulting in their structural damage and collapse. These results were confirmed by fluorescent staining, flow cytometry, and scanning electron microscopy. This present study offers a 'first-glimpse' of cell damage and death during the initial phases of bacterial adhesion to NF membranes and raises a key question about the role of this observed phenomena during early-stage biofilm formation under permeate flux and cross-flow conditions.
      397Scopus© Citations 11
  • Publication
    Nanofiltration and reverse osmosis surface topographical heterogeneities: do they matter for initial bacterial adhesion?
    The role of the physicochemical and surface properties of NF/RO membranes influencing bacterial adhesion has been widely studied. However, there exists a poor understanding of the potential role membrane topographical heterogeneities can have on bacterial adhesion. Heterogeneities on material surfaces have been shown to influence bacterial adhesion and biofilm development. The purpose of this study was therefore to investigate whether the presence of membrane topographical heterogeneities had a significant role during bacterial adhesion as this could significantly impact on how biofouling develops on membranes during NF/RO operation. An extensive study was devised in which surface topographical heterogeneities from two commercial membranes, NF270 and BW30, were assessed for their role in the adhesion of two model organisms of different geometrical shapes, Pseudomonas fluorescens and Staphylococcus epidermidis. The influence of cross-flow velocity and permeate flux was also tested, as well as the angle to which bacteria adhered compared to the flow direction. Bacterial adhesion onto the membranes and in their surface topographical heterogeneities was assessed using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), fluorescence microscopy and image analysis. Results showed that up to 30% of total adhered cells were found in membrane defect areas when defect areas only covered up to 13% of the membrane surface area. This suggests that topographical heterogeneities may play a significant role in establishing environmental niches during the early stages of biofilm development. Furthermore, no noticeable difference between the angle of cell attachment in defect areas compared to the rest of the membrane surface was found.
    Scopus© Citations 17  454
  • Publication
    Bacterial adhesion onto nanofiltration and reverse osmosis membranes: Effect of permeate flux
    The influence of permeate flux on bacterial adhesion to NF and RO membranes was examined using two model Pseudomonas species, namely Pseudomonas fluorescens and Pseudomonas putida. To better understand the initial biofouling profile during NF/RO processes, deposition experiments were conducted in cross flow under permeate flux varying from 0.5 up to 120 L/(h m2), using six NF and RO membranes each having different surface properties. All experiments were performed at a Reynolds number of 579. Complementary adhesion experiments were performed using Pseudomonas cells grown to early-, mid- and late-exponential growth phases to evaluate the effect of bacterial cell surface properties during cell adhesion under permeate flux conditions. Results from this study show that initial bacterial adhesion is strongly dependent on the permeate flux conditions, where increased adhesion was obtained with increased permeate flux, until a maximum of 40% coverage was reached. Membrane surface properties or bacterial growth stages was further found to have little impact on bacterial adhesion to NF and RO membrane surfaces under the conditions tested. These results emphasise the importance of conducting adhesion and biofouling experiments under realistic permeate flux conditions, and raises questions about the efficacy of the methods for the evaluation of antifouling membranes in which bacterial adhesion is commonly assessed under zero-flux or low flux conditions, unrepresentative of full-scale NF/RO processes.
      595Scopus© Citations 22
  • Publication
    Nanofiltration-induced cell death: An integral perspective of early stage biofouling under permeate flux conditions
    The performance of pressure-driven membrane filtration processes for water treatment is hampered by biofouling. A relevant, but often overlooked aspect of this phenomenon concerns the localized microenvironment at the membrane interface. A key question is the level of stress on adhering cells and how this impacts on the developing biofilm. In this study, Pseudomonas fluorescens biofilms were monitored after 1, 2 and 7-day cross-flow nanofiltration experiments using confocal microscopy with live/dead staining which enabled analysis of both biofilm structure and the spatial localization of dead versus live cells. A significant increased level of biomass at low- compared to high-flux conditions (2-day experiments) suggested hindrance of bacterial proliferation at higher fluxes. An increase in live cell fractions was generally observed between 24- and 48-h at low flux conditions (3 bar), while the fraction of dead/injured cells remained constant during that same period. At higher flux conditions (15 bar), the volume of live cell fractions remained constant over 24- and 48-h experiments. The implications of these findings point to the need to reevaluate classical contact-killing strategy for controlling membrane fouling; initial membrane fouling events are characterized by an initially-induced cell death stage followed by an adaptation period through which surviving cells are able to acclimatize in their respective environments. This study emphasizes the need to better understand the role of operating parameters and its resulting cell death during early stage fouling. It is in this context that fouling management strategies can be further developed.
    Scopus© Citations 6  41