Now showing 1 - 10 of 11
  • Publication
    Sampling Rate Reduction for Digital Predistortion of Broadband RF Power Amplifiers
    In this article, we present a novel technique to build digital predistorters that can linearize broadband power amplifiers (PAs) using reduced sampling rates. In contrast to conventional digital predistortion (DPD) where oversampling is necessary to avoid aliasing effect, the proposed method cancels the aliasing distortion using a sliced multistage cancellation scheme. A large reduction of sampling rate can be achieved in digital implementation of DPD, significantly reducing power consumption and implementation cost. Experimental results show that a DPD with a sampling rate of merely 1.5x, instead of 5x, signal bandwidth, can still produce satisfactory performance within the linearization bandwidth but consume only one-third of power, compared with that using the conventional approaches. The proposed technique provides a promising solution for the next-generation 5G systems, where large signal bandwidths are required.
    Scopus© Citations 23  979
  • Publication
    On-Demand Real-Time Optimizable Dynamic Model Sizing for Digital Predistortion of Broadband RF Power Amplifiers
    (IEEE, 2020-07) ;
    © 1963-2012 IEEE. In this article, we present a dynamic model sizing approach for digital predistortion (DPD) of broadband radio-frequency power amplifiers. By employing a novel model structure adaptation algorithm, the DPD model structure can be adaptively adjusted during its real-time deployment to keep the optimum size and complexity under different operation conditions. Power consumption of DPD can be reduced by on-demand automatic model structure adaptation instead of reusing the same model structure for all power levels and band allocations. To realize dynamic model sizing, the adaptation algorithm explores new potential terms based on prior knowledge of the model structure and prunes the DPD model with a stepwise backward regression method. Experimental results show that the algorithm can quickly find the optimum model structure when the operation condition changes. During the adaptation, it can also maintain robust linearization performance with a relatively low computational complexity and thus demonstrates itself as a suitable solution to the linearization of future broadband wireless systems.
    Scopus© Citations 19  376
  • Publication
    Mixture of Experts Approach for Piecewise Modeling and Linearization of RF Power Amplifiers
    Piecewise behavioral models are commonly adopted for modeling and linearization of RF power amplifiers (PAs) that exhibit strong amplitude-dependent nonlinear distortion characteristics, as global polynomial approximations tend to underperform in such scenarios. In this article, we consider a new piecewise model for PAs based on the mixture of experts (ME) approach, which builds on a probabilistic model that allows the different submodels to cooperate--as opposed to operating in an independent fashion that is commonly the case in existing reference methods. We first introduce the ME framework theory while also extend it such that it can be applied to model complex baseband signals and nonlinearities. Then, we show how the ME model allows overcoming some of the intrinsic shortcomings that existing piecewise behavioral models commonly exhibit, which translates into improved modeling accuracy and improved linearization performance. Furthermore, the extension of the ME approach to a tree-structured regression model, referred to as the hierarchical ME model, is also introduced and shown to provide further performance improvements over the basic ME approach. The proposed solutions are validated with extensive RF measurements, covering both PA direct modeling and digital predistortion (DPD)-based linearization, on a gallium nitride (GaN) load-modulated balanced PA, on a GaN Doherty PA, and on a class AB GaN high electron mobility transistor PA, while being compared against several state-of-the-art piecewise methods. The results demonstrate that the ME framework-based models outperform the state of the art.
    Scopus© Citations 10  422
  • Publication
    Ultra-Wideband Dual-Mode Doherty Power Amplifier Using Reciprocal Gate Bias for 5G Applications
    (Institute of Electrical and Electronics Engineers (IEEE), 2019-08-14) ; ; ;
    A novel architecture to extend the bandwidth of the Doherty power amplifier (DPA) is presented in this article. It is illustrated that two DPA modes at different frequency bands can be realized by simply swapping the gate biases of the transistors without changing the matching circuits, and hence, ultrawide bandwidth can be achieved by using a single load modulation network in DPA. A dual-mode DPA with 2.8-4.1-GHz bandwidth for Mode I and 2.2-2.7-GHz/4.2-4.8-GHz bandwidth for Mode II using commercial GaN transistors is designed and implemented to validate the proposed architecture. The fabricated DPA attains a measured 7.5-11.7-dB gain and 39.2-41-dBm saturated power. 35.0%-49.7% drain efficiency is obtained at 6-dB output power back-off for the designed dual-mode bands. When driven by a ten-carrier 200-MHz OFDM signal with 7.7-dB peak-to-average power ratio, the proposed DPA achieves adjacent channel leakage ratio of better than -50 dBc after digital predistortion at 2.5 GHz/3.5 GHz/4.5 GHz with an average efficiency of 46.0%/35.7%/33.0%. This simple configuration provides a promising solution for 5G, where multiple frequency bands in sub-6 GHz will be deployed.
    Scopus© Citations 39  813
  • Publication
    Broadband RF-Input Continuous-Mode Load-Modulated Balanced Power Amplifier With Input Phase Adjustment
    This article presents the theory and design methodology of broadband RF-input continuous-mode load-modulated balanced power amplifier (CM-LMBA) by introducing the CM output-matching networks in the LMBA architecture. It is illustrated that the CM impedance condition can be achieved by properly adjusting the phase difference between the different PA branches in the proposed CM-LMBA during the entire load modulation process. An RF-input CM-LMBA with 1.45-2.45-GHz bandwidth using commercial GaN transistors is designed and implemented to validate the proposed architecture. The fabricated CM-LMBA attains a measured 11.2-13.4-dB gain and around 40-W saturated power. Power-added efficiency (PAE) of 46.4%-56.5% and 43.2%-50.3% is achieved at 6- and 8-dB output power back-offs throughout the designed band. When driven by a 100-MHz OFDM signal with an 8-dB peak-to-average power ratio (PAPR), the proposed CM-LMBA achieves better than -46-dBc adjacent channel leakage ratio (ACLR) and higher than 45% average PAE after digital predistortion at 1.8 and 2.1 GHz.
    Scopus© Citations 49  670
  • Publication
    Digital Suppression of Transmitter Leakage in FDD RF Transceivers With an Enhanced Low-Sampling Rate Behavioral Model
    With continuously increasing of signal bandwidth, the transmitter leakage issue in frequency division duplexer (FDD) transceivers becomes severer. In this letter, an enhanced behavioral model is proposed to suppress FDD transmitter leakage at a low-sampling rate. The theoretical analysis is provided to explain the operation principle of the proposed model. The experimental results show that the proposed model can effectively increase the accuracy of generating sideband replica and thus improve the suppression performance.
      365Scopus© Citations 4
  • Publication
    Digital Suppression of Transmitter Leakage in FDD RF Transceivers: Aliasing Elimination and Model Selection
    (IEEE, 2017-12-07) ; ;
    The transmitter (TX)-induced interference due to power amplifier nonlinearities poses severe desensitization problems to the receiver chain in frequency-division duplexing transceivers. Due to nonlinear signal process involved, a high sampling rate is normally required in the existing digital suppression approaches, which can result in high cost and high power consumption in wideband systems. In this paper, a new digital suppression model is proposed to cancel the TX leakage at baseband with a low sampling rate. The cancellation model is based on the modified decomposed vector rotation model. With the addition of cross-Term products, the enhanced model is capable of eliminating the aliasing effect arising from the reduced sampling rate. Theoretical analysis of aliasing elimination is presented, and the algorithm is subsequently verified by both simulation and experiment results, confirming the effectiveness and feasibility of the proposed cancellation technique for TX leakage suppression. Compared with conventional solutions, the new approach uses much less hardware resource and consumes much lower power while achieving comparable performance.
      493Scopus© Citations 7
  • Publication
    Multiband Dual-Mode Doherty Power Amplifier Employing Phase Periodic Matching Network and Reciprocal Gate Bias for 5G Applications
    This article presents a novel method to design the multiband Doherty power amplifier (DPA). It is illustrated that phase periodic matching networks (PPMNs) can be used as multiband impedance inverters, off-set elements, and phase compensators to realize multiband DPAs. Moreover, the number of Doherty operation bands can be further increased by employing the reciprocal gate biases. A six-band dual-mode DPA with 1.8-2.2-/3.9-4.3-GHz operation bands in Mode I and 1.52-1.72-/2.38-2.53-/3.67-3.82-/4.53-4.68-GHz operation bands in Mode II using commercial GaN transistors is designed and implemented to validate the proposed method. The fabricated DPA achieves 8.7-13.5-dB gain and 39.6-41.5-dBm peak output power at all the designed bands. Drain efficiency of 49.2%-54.5% and 42.2%-56.7% is measured at a 6-dB output back-off in Mode I and Mode II, respectively. When stimulated by a five-carrier 100-MHz OFDM signal with a 7.7-dB peak-to-average power ratio (PAPR), adjacent channel power ratio (ACPR) of better than -48.9 dBc can be obtained by the proposed DPA after digital predistortion with 35.5%-50.1% average drain efficiency at 1.65/1.95/2.45/3.75/4.1/4.6 GHz, respectively.
    Scopus© Citations 28  517
  • Publication
    Analysis and Design of Highly Efficient Wideband RF-Input Sequential Load Modulated Balanced Power Amplifier
    The analysis and design of an RF-input sequential load modulated balanced power amplifier (SLMBA) are presented in this article. Unlike the existing LMBAs, in this new configuration, an over-driven class-B amplifier is used as the carrier amplifier while the balanced PA pair is biased in class-C mode to serve as the peaking amplifier. It is illustrated that the sequential operation greatly extends the high-efficiency power range and enables the proposed SLMBA to achieve high back-off efficiency across a wide bandwidth. An RF-input SLMBA at 3.05-3.55-GHz band using commercial GaN transistors is designed and implemented to validate the proposed architecture. The fabricated SLMBA attains a measured 9.5-10.3-dB gain and 42.3-43.7-dBm saturated power. Drain efficiency of 50.9-64.9/ 46.8-60.7/43.2-51.4% is achieved at 6-/8-/10-dB output power back-off within the designed bandwidth. By changing the bias condition of the carrier device, higher than 49.1% drain efficiency can be obtained within the 12.8-dB output power range at 3.3 GHz. When driven by a 40-MHz orthogonal frequency-division multiplexing (OFDM) signal with 8-dB peak-to-average power ratio (PAPR), the proposed SLMBA achieves adjacent channel leakage ratio (ACLR) better than -25 dBc with an average efficiency of 63.2% without digital predistortion (DPD). When excited by a ten-carrier 200-MHz OFDM signal with 10-dB PAPR, the average efficiency can reach 48.2% and -43.9-dBc ACLR can be obtained after DPD.
      875Scopus© Citations 58
  • Publication
    Complexity-Reduced Model Adaptation for Digital Predistortion of RF Power Amplifiers With Pretraining-Based Feature Extraction
    In this article, we present a new method to reduce the model adaptation complexity for digital predistortion (DPD) of radio frequency (RF) power amplifiers (PAs) under varying operating conditions, using pretrained transformation of model coefficients. Experimental studies show that the PA behavior variations can be effectively tracked using a small number of ``transformed'' coefficients, even with large deviations in its output characteristics. Based on this discovery, to avoid reextracting all the original coefficients every time when the operating condition changes, we propose to conduct a one-time off-line pretraining stage to extract the common features of PA behaviors under different operating conditions first. The online model adaptation process will then only need to identify a small number of transformed coefficients, which can result in a drastic reduction in the computational complexity of the model adaptation process. The proposed solution is validated by experimental results considering varying signal bandwidth and output power levels on a high-efficiency gallium-nitride Doherty PA, where the computational complexity is significantly reduced and the system performance is not compromised.
    Scopus© Citations 18  634