Now showing 1 - 7 of 7
  • Publication
    How DoS attacks can be mounted on Network Slice Broker and can they be mitigated using blockchain?
    Several recent works talk about the potential use of network slice brokering mechanism to facilitate the resource allocation of network slicing in next generation networks. This involves network tenants on the one hand and resource/infrastructure providers on the other hand. However, the potential downside of deploying Network Slice Broker (NSB) is that it can be victimized by DoS (Denial of Service) attack. Thus, the aim of this work is three fold. First, to present the possible ways in which DoS/DDoS attacks can be mounted on NSB and their adverse effects. Second, to propose and implement initial blockchain-based solution named as Security Service Blockchain (SSB) to prevent DoS attacks on NSB. Third, to enumerate the challenges and future research directions to effectively utilize blockchain for mitigating DoS/DDoS attacks on NSB. To evaluate the performance the proposed SSB framework is implemented using Hyperledger Fabric. The results manifest that the latency impact of the legitimate slice creation over scaled up malicious traffic remains minimal with the use of SSB framework. The integration of SSB with NSB results in gaining several fold reduction in latency under DoS attack scenario.
      11Scopus© Citations 7
  • Publication
    Driving forces for Multi-Access Edge Computing (MEC) IoT integration in 5G
    The emergence of Multi-Access Edge Computing (MEC) technology aims to extend cloud computing capabilities to the edge of the wireless access networks, i.e., closer to the end-users. Thus, MEC-enabled 5G wireless systems are envisaged to offer real-time, low-latency, and high-bandwidth access to the radio network resources. Thus, MEC allows network operators to open up their networks to a wide range of innovative services, thereby giving rise to a brand-new ecosystem and a value chain. Furthermore, MEC as an enabling technology will provide new insights into coherent integration of Internet of Things (IoT) in 5G wireless systems. In this context, this paper expounds the four key technologies, including Network Function Virtualization (NFV), Software Defined Networking (SDN), Network Slicing and Information Centric Networking (ICN), that will propel and intensify the integration of MEC IoT in 5G networks. Moreover, our goal is to provide the close alliance between MEC and these four driving technologies in the 5G IoT context and to identify the open challenges, future directions, and concrete integration paths.
      15Scopus© Citations 59
  • Publication
    Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research
    Emerging applications such as Internet of Everything, Holographic Telepresence, collaborative robots, and space and deep-sea tourism are already highlighting the limitations of existing fifth-generation (5G) mobile networks. These limitations are in terms of data-rate, latency, reliability, availability, processing, connection density and global coverage, spanning over ground, underwater and space. The sixth-generation (6G) of mobile networks are expected to burgeon in the coming decade to address these limitations. The development of 6G vision, applications, technologies and standards has already become a popular research theme in academia and the industry. In this paper, we provide a comprehensive survey of the current developments towards 6G. We highlight the societal and technological trends that initiate the drive towards 6G. Emerging applications to realize the demands raised by 6G driving trends are discussed subsequently. We also elaborate the requirements that are necessary to realize the 6G applications. Then we present the key enabling technologies in detail. We also outline current research projects and activities including standardization efforts towards the development of 6G. Finally, we summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions towards 6G.
      668Scopus© Citations 305
  • Publication
    A survey of Virtual Private LAN Services (VPLS): Past, present and future
    Virtual Private LAN services (VPLS) is a Layer 2 Virtual Private Network (L2VPN) service that has gained immense popularity due to a number of its features, such as protocol independence, multipoint-to-multipoint mesh connectivity, robust security, low operational cost (in terms of optimal resource utilization), and high scalability. In addition to the traditional VPLS architectures, novel VPLS solutions have been designed leveraging new emerging paradigms, such as Software Defined Networking (SDN) and Network Function Virtualization (NFV), to keep up with the increasing demand. These emerging solutions help in enhancing scalability, strengthening security, and optimizing resource utilization. This paper aims to conduct an in-depth survey of various VPLS architectures and highlight different characteristics through insightful comparisons. Moreover, the article discusses numerous technical aspects such as security, scalability, compatibility, tunnel management, operational issues, and complexity, along with the lessons learned. Finally, the paper outlines future research directions related to VPLS. To the best of our knowledge, this paper is the first to furnish a detailed survey of VPLS.
      31Scopus© Citations 12
  • Publication
    The Role of Blockchain to Fight Against COVID-19
    IEEE The COVID-19 pandemic has adversely affected almost all aspects of human life, various sectors of business, and regions of the world. The flow of human activities halted for several months, and are now being carefully redefined to align with guidelines and recommendations to avoid the spread of the novel coronavirus. In contrast to other pandemics the world has witnessed in the past, the technological advancements of the current era are a boon that can play a key role in safeguarding humanity. In this work, we begin by highlighting general challenges that have arisen during the COVID-19 pandemic. Next, to gauge the applicability of blockchain as a key enabling technology, we identify potential use cases to meet current needs. Further, for each use case, we present a high-level view of how blockchain can be leveraged and discuss the expected performance. Finally, we highlight the challenges that must be addressed to harness the full potential of blockchain technology and discuss plausible solutions.
      1238Scopus© Citations 144
  • Publication
    Privacy Protected Blockchain Based Architecture and Implementation for Sharing of Students’ Credentials
    Sharing of students’ credentials is a necessary and integral process of an education ecosystem that comprises various stakeholders like students, schools, companies, professors and the governmental authorities. As of today, all these stakeholders have to put-in an enormous amount of efforts to ensure the authenticity and privacy of students’ credentials. Despite these efforts, the process of sharing students’ credentials is complex, error-prone and not completely secure. Our aim is to leverage blockchain technology to mitigate the existing security-related issues concerning the sharing of students’ credentials. Thus, the paper proposes a tamper-proof, immutable, authentic, non-repudiable, privacy protected and easy to share blockchain-based architecture for secured sharing of students’ credentials. To increase the scalability, the proposed system uses a secure off-chain storage mechanism. The performance and viability of the proposed architecture is analyzed by using an Ethereum based prototypical implementation. The test results imply that requests can be executed within few seconds (without block-time) and the system has stability to process up to 1000 simultaneous requests.
    Scopus© Citations 40  74
  • Publication
    Emerging Directions for Blockchainized 6G
    The next generation of mobile networks, i.e., sixth generation (6G), is expected by 2030, with already burgeoning research efforts towards this goal. Along with various other candidate technologies, blockchain is envisioned to enable and enhance numerous key functionalities of 6G. Thus, the main objective of this paper is threefold: 1) to categorize the different aspects of 6G into four emerging directions that anticipate significant advancements leveraging blockchain, 2) to discuss the potential role of blockchainized 6G under each key emerging direction, 3) to expound on the technical challenges in blockchaining 6G along with possible solutions.
      139Scopus© Citations 4