Now showing 1 - 10 of 24
No Thumbnail Available
Publication

Inertial sensory data provides depth to clinical measures of dynamic balance

2017-09-17, Johnston, William, O'Reilly, Martin, Duignan, Ciara, Coughlan, Garrett, Caulfield, Brian

Objectives: Establish the role a single inertial sensor may play in the objective quantification of dynamic postural stability following acute ankle injuries.Background The Y Balance test (YBT) is one of the most commonly utilised clinical dynamic balance assessments. Research has demonstrated the utility of the YBT in identifying balance deficits in those with acute ankle injuries and chronic ankle instability. However, reach distances fail to provide information relating to the quality of balance strategy and dynamic stability. Motion capture systems are often employed to provide micro-level detail pertaining to an individuals postural stability. However, such systems are expensive, lack accessibility, hinder natural movement and require extensive processing expertise. The addition of inertial sensors may allow for the inexpensive, accessible quantification of postural stability in an unconstrained environment.Case Description Forty-two elite under-20 rugby union players were recruited as part of a wider study. Two athletes were identified to have sustained acute ankle injuries two weeks previously; one lateral ankle sprain and one deltoid ligament sprain. A single inertial sensor was mounted at the level of the 4th lumbar vertebra. Participants completed four practice YBTs bilaterally, prior to completing 3 recorded YBTs. Reach distance and inertial sensor data were recorded for each reach excursion.Outcomes When compared to the group mean, both athletes demonstrated no clinically meaningful reduction in reach distances for all three reach directions. However, both athletes demonstrated a higher 95% ellipsoid volume of sway than the healthy control group for all three directions of the YBT when completed on their affected limb.Conclusions Preliminary analysis suggests that inertial sensor data may provide information relating to the quality of dynamic postural stability following an acute ankle injury. Further investigation is required to establish the role that such measures may play in the assessment and management of ankle injuries.

No Thumbnail Available
Publication

Star Excursion Balance Test performance and application in elite junior rugby union players

2014-11, Coughlan, Garrett, Delahunt, Eamonn, O'Sullivan, Eoghan, Fullam, Karl, Green, Brian, Caulfield, Brian

Objectives: To evaluate performance on selected reach directions of the Start Excursion Balance Test (SEBT) in an elite underage rugby union population, and determine if differences exist between the forward and back position units. This information may have implications for the application of this test in player injury prevention and management. Design: Descriptive study. Setting: Gymnasium at an elite junior rugby union screening camp. Participants: 102 healthy male elite rugby union players (age = 17.9 ± 1.1 years, height = 1.83 ± 0.07 m, body mass = 90.5 ± 11.3 kg). Main outcome measures: Participants were assessed on the Anterior (A), Posterior-medial (PM), and Posterior-lateral (PL) reach directions of the SEBT. Results: Normative data for SEBT performance in the A, PM and PL reach directions were established for an elite junior rugby union population. No significant differences in dynamic postural stability were observed between the forward and back position units. Conclusions: This study provides normative SEBT data on an elite junior rugby union population, which enables clinicians to compare player dynamic postural stability and has implications for use in the prevention and management of player injuries.

No Thumbnail Available
Publication

An investigation into the acute effects of electrical muscle stimulation on cardiopulmonary function in a chronic obstructive pulmonary disease patient - a pilot case study

2010-04, Hennessy, Eilis, Coughlan, Garrett, Caulfield, Brian, Crowe, Louis, Perumal, Shakila Devi, McDonnell, Tim J.

Chronic obstructive pulmonary disease (COPD) patients commonly find it difficult to participate in conventional aerobic exercise training owing to limited cardiopulmonary reserve, excessive dyspnoea and muscle fatigue. Recent studies have shown that significant improvements in oxygen consumption can be gained post 6-week electrical muscle stimulation (EMS) training. Low frequency currents elicit a sustained and significant aerobic response and may be appropriate for COPD patients, who cannot exercise in a conventional manner. A recent study compared the acute metabolic response among COPD patients during resistance training and EMS, using a tetanic frequency of 75 Hertz (Hz), however no investigations have reported on the acute effects of EMS on cardiopulmonary function in a COPD population, using low frequency stimulation current.

No Thumbnail Available
Publication

The physiological effects of low level electrical stimulation on short term recovery from supra maximal exercise bouts : a case study

2010-04, Malone, John, Coughlan, Garrett, Crowe, Louis, Caulfield, Brian

Inadequate recovery from short-term, high-intensity bouts of exercise can be a limiting factor to optimal sporting performance [1]. Previous research investigating recovery from intense exercise using various intervention protocols (e.g., active recovery, massage, cold and contrast water therapy, compression suits etc.) have generally found positive results when compared to passive recovery [2,3]. A recent study utilised electrical muscle stimulation (EMS) as an intervention for short-term recovery (< 1 hr) between bouts of intense exercise [4]. They concluded that EMS shows promise as an alternate recovery treatment for lowering blood lactate when compared to passive recovery.

No Thumbnail Available
Publication

Neuromuscular electrical stimulation exercise: a potential alternative to conventional exercise in the management of type 2 diabetes

2017, Giggins, Oonagh M., Crowe, Louis, Coughlan, Garrett, Caulfield, Brian

Aims: Exercise is fundamental in the prevention and treatmentof type 2 diabetes (T2D). However, many individualsface barriers to exercise. Neuromuscular electrical stimulation(NMES) is an alternative to conventional exercise that mayprove beneficial in the treatment of T2D. The aim of thisstudy was to investigate the effects of an 8-week NMESexercise programme in a T2D population.Methods: A repeated measures one-group cohort interventionstudy was conducted. Thirteen T2D participants (age 52.06.9years, height 1.790.06 m, weight 104.511.9 kg, BMI 32.84.3kg/m2) underwent an 8-week NMES intervention. Venousblood markers, body composition, blood pressure, quadricepsstrength and predicted maximal oxygen consumption wereassessed at baseline and after the 8-week intervention.Results: Significant improvements in fasting plasma glucose,percentage body fat and peak isometric quadriceps torquewere noted following the intervention (p<0.05).Conclusions: The principal findings of this study were thatNMES can improve body composition, muscle strength andglycaemic control in T2D participants. NMES may thereforeprovide an alternative to those individuals with T2D whohave barriers to exercise participation. Further randomisedcontrolled trials with larger participant numbers are requiredto investigate this further.

No Thumbnail Available
Publication

Automatic detection of collisions in elite level rugby union using a wearable sensing device

2012, Kelly, Daniel, Coughlan, Garrett, Green, Brian, Caulfield, Brian

Elite rugby union teams currently employ the latest technology to monitor and evaluate the physical demands of training and games on their players. Tackling has been shown to be the most common cause of injury in rugby union, yet current player monitoring technology does not effectively evaluate player tackling measurements. Currently, to evaluate measurements specific to player tackles, a time-consuming manual analysis of player sensor data and video footage is required. The purpose of this work is to investigate tackle modeling techniques which can be utilised to automatically detect player tackles and collisions using sensing technology already being used by elite international and club level rugby union teams. This paper discusses issues relevant to automatic tackle analysis, describes a technique to detect tackles using sensing data and validates the technique by comparing automatically detected collisions to manually labeled collisions using data from elite club and international level players. The results of the validation show that the system is able to consistently identify collisions with very few false posi- tives and false negatives, achieving a recall and precision rating of 0.933 and 0.958, respectively. The aim is that the automatically detected tackles can provide coaching, medical and strength and conditioning staff with objective tackle-specific measurements, in real time, which can be used in injury prevention and rehabilitation strategies.

No Thumbnail Available
Publication

Neuromuscular electrical stimulation in the treatment of knee osteoarthritis: a systematic review and meta-analysis

2012-10, Giggins, Oonagh M., Fullen, Brona M., Coughlan, Garrett

Objective: To assess the effectiveness of surface neuromuscular electrical stimulation in the treatment of knee osteoarthritis. Design: Systematic review and meta-analysis of randomized controlled and controlled clinical trials Methods: Studies were identified from databases (MEDLINE, EMBASE, CINAHL, Sports Discus, PEDro and the Cochrane Library) searched to January 2011 using a battery of keywords. Two reviewers selected studies meeting inclusion criteria. The methodological quality of the included studies was assessed using the Thomas Test and the strength of the evidence was then graded using the Agency for Health Care Policy and Research guidelines. Data were pooled and meta-analyses were performed. Results: Nine randomized controlled trials and one controlled clinical trial, studying a total of 409 participants (n = 395 for randomized controlled trials, and n = 14 for controlled trial) with a diagnosis of osteoarthritis were included. Inconsistent evidence (level D) was found that neuromuscular electrical stimulation has a significant impact on measures of pain, function and quadriceps femoris muscle strength in knee osteoarthritis. Conclusion: The role of neuromuscular electrical stimulation in the treatment of knee osteoarthritis is ambiguous. Therefore, future work is needed in this field to clearly establish the role of neuromuscular electrical stimulation in this population.

No Thumbnail Available
Publication

Inertial Sensor Technology Can Capture Changes in Dynamic Balance Control during the Y Balance Test

2017, Johnston, William, O'Reilly, Martin, Coughlan, Garrett, Caulfield, Brian

Introduction: The Y Balance Test (YBT) is one of the most commonly utilised clinical dynamicbalance assessments. Research has demonstrated the utility of the YBT in identifying balancedeficits in individuals following lower limb injury. However, quantifying dynamic balancebased on reach distances alone fails to provide potentially important information related tothe quality of movement control and choice of movement strategy during the reaching action.The addition of an inertial sensor to capture more detailed motion data may allow for the inexpensive,accessible quantification of dynamic balance control during the YBT reach excursions.As such, the aim of this study was to compare baseline and fatigued dynamic balancecontrol, using reach distances and 95EV (95% ellipsoid volume), and evaluate the ability of95EV to capture alterations in dynamic balance control, which are not detected by YBT reachdistances. Methods: As part of this descriptive laboratory study, 15 healthy participants completedrepeated YBTs at 20, 10, and 0 min prior to and following a modified 60-s Wingate testthat was used to introduce a short-term reduction in dynamic balance capability. Dynamicbalance was assessed using the standard normalised reach distance method, while dynamicbalance control during the reach attempts was simultaneously measured by means of the95EV derived from an inertial sensor, worn at the level of the 4th lumbar vertebra. Results:Intraclass correlation coefficients for the inertial sensor-derived measures ranged from 0.76to 0.92, demonstrating strong intrasession test-retest reliability. Statistically significant altera-tions (p < 0.05) in both reach distance and the inertial sensor-derived 95EV measure wereobserved immediately post-fatigue. However, reach distance deficits returned to baseline levelswithin 10 min, while 95EV remained significantly increased (p < 0.05) beyond 20 min forall 3 reach distances. Conclusion: These findings demonstrate the ability of an inertial sensorderivedmeasure to quantify alterations in dynamic balance control, which are not capturedby traditional reach distances alone. This suggests that the addition of an inertial sensor tothe YBT may provide clinicians and researchers with an accessible means to capture subtlealterations in motor function in the clinical setting.

No Thumbnail Available
Publication

A comparison of the movement patterns of specific rugby union movements on both natural turf and artificial turf

2014-10-26, O'Keeffe, Seamus, Fullam, Karl, Feeley, Marc O., Caulfield, Brian, Delahunt, Eamonn, Coughlan, Garrett, Gilchrist, M. D.

A limitation of sports kinematic studies is that they cannot fully represent in-situ play conditions for fast dynamic sports. This paper describes the use of new inertial sensor measurement technology (ODonovan et al., 2009) to analyse player motions in the field under game-like conditions in order to quantify the impact of different playing surfaces on movement patterns. The wireless sensor system used in this study (Shimmer 3, Shimmer Research, Ireland) is a lightweight (50x25x12.5mm3), wearable, low-power consumption inertial measurement unit that contains a tri-axial accelerometer, gyroscope, and magnetometer. Sensor data can be used to derive a range of spatiotemporal and kinematic variables to quantify performance during gait and other functional activities. In our research we are using these sensors as a means to characterise movement during a running activity. The motivation for this study has been to compare movement profiles and strategies of rugby players performing game related tasks on natural turf surfaces and on synthetic surfaces, to enable a better understanding of the impact of different playing surfaces on movement and associated forces and stresses exerted on the body. This is important as there is a growing trend towards use of synthetic surfaces in rugby union and there have been anecdotal reports of injuries that are perceived to be related to the playing surface. In this paper we present preliminary movement data acquired from players performing a 10m sprint test on natural and synthetic surfaces and describe our methods of data extraction and subsequent data processing.

No Thumbnail Available
Publication

Challenging Concussed Athletes: The Future of Balance Assessment in Concussion

2016-12-30, Johnston, William, Coughlan, Garrett, Caulfield, Brian

The assessment and management of sports-related concussion has become a contentious issue in the field of sports medicine. The current consensus in concussion evaluation involves the use of a subjective examination, supported by multifactorial assessment batteries designed to target the various components of cerebral function. Balance assessment forms an important component of this multifactorial assessment, as it can provide an insight into the function of the sensorimotor subsystems post-concussion. In recent times, there has been a call to develop objective clinical assessments that can aid in the assessment and monitoring of concussion. However, traditional static balance assessments are derived from neurologically impaired populations, are subjective in nature, do not adequately challenge high functioning athletes and may not be capable of detecting subtle balance disturbances following a concussive event. In this review, we provide an overview of the importance of assessing motor function following a concussion, and the challenges facing clinicians in its assessment and monitoring. Additionally, we discuss the limitations of the current clinical methods employed in balance assessment, the role of technology in improving the objectivity of traditional assessments, and the potential role inexpensive portable technology may play in providing objective measures of more challenging dynamic tasks.