Now showing 1 - 5 of 5
  • Publication
    Generation of a Building Typology for Risk Assessment due to Urban Tunnelling
    Major underground infrastructure projects are often located beneath dense urban environments in an effort to relieve congested areas. The effects of urban tunnelling works can impinge on hundreds, if not thousands of structures, many of which a re historically significant. Tunnel-induced ground movements can result in significant building damage and, therefore, require an accurate risk assessment of the existing built heritage and the selection of appropriate preventative measures. Damage prediction techniques extend from traditional empirical and analytical methods to modern computational modelling techniques. A common requirement for many damage assessment methodologies is the development of a building typology. Such typologies can provide critical information where measured drawings, particularly of structural elements (e.g. floor and wall thickness), are not otherwise available. This study begins to establish a building typology for a historic area of Dublin's city centre for which an underground railway system has been planned.
      185
  • Publication
    Pioneering Real-time Computational Models for Building Damage Prediction During Adjacent Tunnel Excavation
    Numerical modelling is commonly employed prior to tunnel excavation to estimate surface settlements and to predict the response of adjacent structures. Unfortunately, geotechnical and building parameters are difficult to determine for the large geographical extent of a tunnelling project. As such, parametric values for modelling purposes are frequently assumed and are rarely revised to provide updated predictions as field data becomes available. Given advances in 'real time' data availability from subsurface- and surface-based monitoring systems, the question arises of how to better fully exploit this data for improved adjacent building protection. To achieve this, integration of numerical models into the monitoring process to provide updated 'real time' building response predictions is explored. This paper extends existing frameworks which utilize geotechnical field data to provide 'real time' predictions to also include building considerations.
      215
  • Publication
    The Effect of Uncertainty on the Prediction of Building Damage Due to Tunnelling-Induced Settlement
    Prediction of the response of buildings to tunnelling-induced settlement for the extent of a tunnel route is a complex task due to the heterogeneous nature of ground conditions, variable tunnelling operations, and unknown building parameters. Consequently, there are generally uncertainties associated with building damage predictions. This paper presents a probabilistic numerical methodology to investigate the effect of uncertainties for the damage prediction of masonry buildings due to tunnelling-induced settlement. The methodology is employed to provide a Class C1 prediction for a previously documented case history. The results demonstrate the uncertainties that have a significant influence in terms of the building response prediction and, furthermore, provide a quantitative risk assessment for masonry buildings due to nearby tunnelling.  
      389
  • Publication
    Steps toward a probabilistic framework for tunnelling damage
    Globally, the high rates of urbanization over the past century have spurred unprecedented levels of tunnel construction. With each tunnel installation, there is a large affiliated risk for damage to aboveground structures, especially those of unreinforced masonry. Such damage (and the subsequent costs and litigation) occur, despite huge sums committed to construction monitoring and pre-tunnel mitigation. Arguably, damage still happens because the wide range of parameters and the extent of their variability are not sufficiently considered in the risk assessment process. To address these uncertainties, a probabilistic framework for the large-scale risk assessment of existing, unreinforced masonry buildings subjected to bored tunnelling is proposed by the Urban Modelling Group (UMG) at the University College Dublin (UCD). This paper summarizes the initial steps needed to achieve such a framework.
      337
  • Publication
    A Multi-hazard Risk Assessment Methodology, Stress Test Framework and Decision Support Tool for Transport Infrastructure Networks
    (Elsevier, 2016-06-27) ;
    Natural hazards can cause serious disruption to societies and their transport infrastructure networks. The impact of extreme hazard events is largely dependent on the resilience of societies and their networks. The INFRARISK project is developing a reliable stress test framework for critical European transport infrastructure to analyse the response of networks to extreme hazard events. The project considers the spatio-temporal processes associated with multi-hazard and cascading extreme events (e.g. earthquakes, floods, landslides) and their impacts on road and rail transport infrastructure networks. As part of the project, an operational framework is being developed using an online INFRARISK Decision Support Tool (IDST) to advance decision making approaches, leading to better protection of existing transport infrastructure. The framework will enable the next generation of European infrastructure managers to analyse the risk to critical road and rail infrastructure networks due to extreme natural hazard events. To demonstrate the overarching risk assessment methodology developed in the project, the methodology is demonstrated for two case studies, which comprise portions of the European TEN-T network; a road network in the region of Bologna, Italy and a rail network extending from Rijeka to Zagreb in Croatia. This paper provides an overview of the INFRARISK multi-hazard risk assessment methodology and a brief introduction to the case studies, as the project is currently ongoing.
    Scopus© Citations 16  329