Now showing 1 - 10 of 33
  • Publication
    A method for isolation of cone photoreceptors from adult zebrafish retinae
    Background: Cone photoreceptors are specialised sensory retinal neurons responsible for photopic vision, colour perception and visual acuity. Retinal degenerative diseases are a heterogeneous group of eye diseases in which the most severe vision loss typically arises from cone photoreceptor dysfunction or degeneration. Establishing a method to purify cone photoreceptors from retinal tissue can accelerate the identification of key molecular determinants that underlie cone photoreceptor development, survival and function. The work herein describes a new method to purify enhanced green fluorescent protein (EGFP)-labelled cone photoreceptors from adult retina of Tg(3.2gnat2:EGFP) zebrafish. Results: Methods for dissecting adult zebrafish retinae, cell dissociation, cell sorting, RNA isolation and RNA quality control were optimised. The dissociation protocol, carried out with ~30 retinae from adult zebrafish, yielded approximately 6 × 106 cells. Flow cytometry cell sorting subsequently distinguished 1 × 106 EGFP+ cells and 4 × 106 EGFP− cells. Electropherograms confirmed downstream isolation of high-quality RNA with RNA integrity number (RIN) >7.6 and RNA concentration >5.7 ng/µl obtained from both populations. Reverse Transcriptase-PCR confirmed that the EGFP-positive cell populations express known genetic markers of cone photoreceptors that were not expressed in the EGFP-negative cell population whereas a rod opsin amplicon was only detected in the EGFP-negative retinal cell population. Conclusions: This work describes a valuable adult zebrafish cone photoreceptor isolation methodology enabling future identification of cone photoreceptor-enriched genes, proteins and signalling networks responsible for their development, survival and function. In addition, this advancement facilitates the identification of novel candidate genes for inherited human blindness.
      606Scopus© Citations 6
  • Publication
    Pharmacological Restoration of Visual Function in a Blind Zebrafish Mutant Following Histone Deacetylase Inhibitor (HDACi) Treatment
    Background: Controversially, histone deacetylase (HDAC) inhibitors are in clinical trial for the treatment of inherited retinal degenerations. Previous studies report that patients suffering from Retinitis Pigmentosa (RP) show improved visual field and acuity following treatment with the HDAC inhibitor valproic acid (VPA) (Clemson, Tzekov et al. 2011). However, other studies disagree with these findings (van Schooneveld, van den Born et al. 2011) and (Bhalla, Joshi et al. 2013). Thus, we sought to determine if treatment with HDACi rescued visual function and retinal morphology in a blind zebrafish dying-on-edge (dye) mutant identified from a forward genetics screen.
      218
  • Publication
    Discovery and Development of the Quininib Series of Ocular Drugs
    The quininib series is a novel collection of small-molecule drugs with antiangiogenic, antivascular permeability, anti-inflammatory, and antiproliferative activity. Quininib was initially identified as a drug hit during a random chemical library screen for determinants of developmental ocular angiogenesis in zebrafish. To enhance drug efficacy, novel quininib analogs were designed by applying medicinal chemistry approaches. The resulting quininib drug series has efficacy in in vitro and ex vivo models of angiogenesis utilizing human cell lines and tissues. In vivo, quininib drugs reduce pathological angiogenesis and retinal vascular permeability in rodent models. Quininib acts as a cysteinyl leukotriene (CysLT) receptor antagonist, revealing new roles of these G-protein-coupled receptors in developmental angiogenesis of the eye and unexpectedly in uveal melanoma (UM). The quininib series highlighted the potential of CysLT receptors as therapeutic targets for retinal vasculopathies (e.g., neovascular age-related macular degeneration, diabetic retinopathy, and diabetic macular edema) and ocular cancers (e.g., UM).
      311
  • Publication
    Alternative Experimental Models of Ciliary Trafficking and Dysfunction in the Retina
    The cilia of cells constituent to the retina are fundamental to vision. Of the ∼250 genes causative of inherited retinal degeneration, 20% mediate functions related to photoreceptor primary cilium formation, structure or function. Primary cilia are sensory and signalling organelles emanating from the plasma membrane of most cells. They regulate a variety of biological processes, including left/right body axis asymmetry, limb patterning, central nervous system development and sensation. Cilia function by forming a specialised region of plasma membrane which concentrates specific signalling components, such as for sonic hedgehog signalling and phototransduction. Here, we review the roles of ciliary signalling and trafficking pathways in retinal biology and disease with a focus on the potential of non-rodent, metazoan experimental models for shedding light on these processes.
      109
  • Publication
    Unexpected genetic heterogeneity for primary ciliary dyskinesia in the Irish Traveller population
    We present a study of five children from three unrelated Irish Traveller families presenting with primary ciliary dyskinesia (PCD). As previously characterized disorders in the Irish Traveller population are caused by common homozygous mutations, we hypothesised that all three PCD families shared the same recessive mutation. However, exome sequencing showed that there was no pathogenic homozygous mutation common to all families. This finding was supported by histology, which showed that each family has a different type of ciliary defect; transposition defect (family A), nude epithelium (family B) and absence of inner and outer dynein arms (family C). Therefore, each family was analysed independently using homozygosity mapping and exome sequencing. The affected siblings in family A share a novel 1 bp duplication in RSPH4A (NM_001161664.1:c.166dup; p.Arg56Profs*11), a radial-spoke head protein involved in ciliary movement. In family B, we identified three candidate genes (CCNO, KCNN3 and CDKN1C), with a 5-bp duplication in CCNO (NM_021147.3:c.258_262dup; p.Gln88Argfs*8) being the most likely cause of ciliary aplasia. This is the first study to implicate CCNO, a DNA repair gene reported to be involved in multiciliogenesis, in PCD. In family C, we identified a ~3.5-kb deletion in DYX1C1, a neuronal migration gene previously associated with PCD. This is the first report of a disorder in the relatively small Irish Traveller population to be caused by >1 disease gene. Our study identified at least three different PCD genes in the Irish Traveller population, highlighting that one cannot always assume genetic homogeneity, even in small consanguineous populations.
      521Scopus© Citations 21
  • Publication
    Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis
    Background: The genetic cascades underpinning vertebrate early eye morphogenesis are poorly understood. One gene family essential for eye morphogenesis encodes the retinal homeobox (Rx) transcription factors. Mutations in the human retinal homeobox gene (RAX) can lead to gross morphological phenotypes ranging from microphthalmia to anophthalmia. Zebrafish rx3 null mutants produce a similar striking eyeless phenotype with an associated expanded forebrain. Thus, we used zebrafish rx3-/- mutants as a model to uncover an Rx3-regulated gene network during early eye morphogenesis. Results: Rx3-regulated genes were identified using whole transcriptomic sequencing (RNA-seq) of rx3-/- mutants and morphologically wild-type siblings during optic vesicle morphogenesis. A gene co-expression network was then constructed for the Rx3-regulated genes, identifying gene cross-talk during early eye development. Genes highly connected in the network are hub genes, which tend to exhibit higher expression changes between rx3-/- mutants and normal phenotype siblings. Hub genes down-regulated in rx3-/- mutants encompass homeodomain transcription factors and mediators of retinoid-signaling, both associated with eye development and known human eye disorders. In contrast, genes up-regulated in rx3-/- mutants are centered on Wnt signaling pathways, associated with brain development and disorders. The temporal expression pattern of Rx3-regulated genes was further profiled during early development from maternal stage until visual function is fully mature. Rx3-regulated genes exhibited synchronized expression patterns, and a transition of gene expression during the early segmentation stage when Rx3 was highly expressed. Furthermore, most of these deregulated genes are enriched with multiple RAX-binding motif sequences on the gene promoter. Conclusions: Here, we assembled a comprehensive model of Rx3-regulated genes during early eye morphogenesis. Rx3 promotes optic vesicle morphogenesis and represses brain development through a highly correlated and modulated network, exhibiting repression of genes mediating Wnt signaling and concomitant enhanced expression of homeodomain transcription factors and retinoid-signaling genes.
      482Scopus© Citations 20
  • Publication
    Rpgrip1 is required for rod outer segment development and ciliary protein trafcking in zebrafsh
    Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.
      194Scopus© Citations 19
  • Publication
    Dawn and dusk peaks of outer segment phagocytosis, and visual cycle function require Rab28
    RAB28 is a farnesylated, ciliary G-protein. Patient variants in RAB28 are causative of autosomal recessive cone-rod dystrophy (CRD), an inherited human blindness. In rodent and zebrafish models, the absence of Rab28 results in diminished dawn, photoreceptor, outer segment phagocytosis (OSP). Here, we demonstrate that Rab28 is also required for dusk peaks of OSP, but not for basal OSP levels. This study further elucidated the molecular mechanisms by which Rab28 controls OSP and inherited blindness. Proteomic profiling identified factors whose expression in the eye or whose expression at dawn and dusk peaks of OSP is dysregulated by loss of Rab28. Notably, transgenic overexpression of Rab28, solely in zebrafish cones, rescues the OSP defect in rab28 KO fish, suggesting rab28 gene replacement in cone photoreceptors is sufficient to regulate Rab28-OSP. Rab28 loss also perturbs function of the visual cycle as retinoid levels of 11-cRAL, 11cRP, and atRP are significantly reduced in larval and adult rab28 KO retinae (p <.05). These data give further understanding on the molecular mechanisms of RAB28-associated CRD, highlighting roles of Rab28 in both peaks of OSP, in vitamin A metabolism and in retinoid recycling.
      150Scopus© Citations 4
  • Publication
    Genetic Deletion of Zebrafish Rab28 Causes Defective Outer Segment Shedding, but Not Retinal Degeneration
    The photoreceptor outer segment is the canonical example of a modified and highly specialized cilium, with an expanded membrane surface area in the form of disks or lamellae for efficient light detection. Many ciliary proteins are essential for normal photoreceptor function and cilium dysfunction often results in retinal degeneration leading to impaired vision. Herein, we investigate the function and localization of the ciliary G-protein RAB28 in zebrafish cone photoreceptors. CRISPR-Cas9 generated rab28 mutant zebrafish display significantly reduced shed outer segment material/phagosomes in the RPE at 1 month post fertilization (mpf), but otherwise normal visual function up to 21 dpf and retinal structure up to 12 mpf. Cone photoreceptor-specific transgenic reporter lines show Rab28 localizes almost exclusively to outer segments, independently of GTP/GDP nucleotide binding. Co-immunoprecipitation analysis demonstrates tagged Rab28 interacts with components of the phototransduction cascade, including opsins, phosphodiesterase 6C and guanylate cyclase 2D. Our data shed light on RAB28 function in cones and provide a model for RAB28-associated cone-rod dystrophy.
      238Scopus© Citations 8
  • Publication
    Early safety assessment of human oculotoxic drugs using the zebrafish visualmotor response
    Introduction: Many prescribed drugs can adversely affect the eye by causing damage to the function of visual pathways or toxicity to the retina. Zebrafish have the potential to efficiently predict drugs with adverse ocular effects at pre-clinical stages of development. In this study, we explore the potential of using a semi-automated visual behaviour assay to predict drug-induced ocular toxicity in wild-type zebrafish larvae. Methods: 3 dpf larvae were treated with six known oculotoxic drugs and five control drugs in embryo medium containing 0.1% DMSO. After 48 h, larvae were assessed using the visualmotor response (VMR), an assay which quantifies locomotor responses to light changes; the optokinetic response (OKR), a behavioural assay that quantifies saccadic eye responses to rotating stimuli; and the touch response, a locomotor response to tactile stimuli. Results: 9 of 10 negative control drugs had no effect on zebrafish visual behaviour. 5 of the 6 known oculotoxic drugs (digoxin, gentamicin, ibuprofen, minoxidil and quinine) showed adverse effects on zebrafish visual behaviour assessed by OKR or the more automated VMR. No gross morphological changes were observed in treated larvae. The general locomotor activity of treated larvae, tested using the touch response assay, showed no differences with respect to controls. Overall the VMR assay had a sensitivity of 83%, a specificity of 100% and a positive predictive value of 100%. Discussion: This study confirms the suitability of the VMR assay as an efficient and predictive pre-clinical approach to evaluate adverse ocular effects of drugs on visual function in vivo.
      842Scopus© Citations 52