Now showing 1 - 10 of 23
  • Publication
    Micrometre-scale deformation observations reveal fundamental controls on geological rifting
    Many of the world's largest volcanic eruptions are associated with geological rifting where major fractures open at the Earth's surface, yet fundamental controls on the near-surface response to the rifting process are lacking. New high resolution observations gleaned from seismometer data during the 2014 Bároarbunga basaltic dyke intrusion in Iceland allow us unprecedented access to the associated graben formation process on both sub-second and micrometre scales. We find that what appears as quasi steady-state near-surface rifting on lower resolution GPS observation comprises discrete staccato-like deformation steps as the upper crust unzips through repetitive low magnitude (M < 0) failures on fracture patches estimated between 300 m and 1200 m in size. Stress drops for these events are one to two orders of magnitude smaller than expected for tectonic earthquakes, demonstrating that the uppermost crust in the rift zone is exceptionally weak.
      97Scopus© Citations 12
  • Publication
    Helicopter vs. volcanic tremor: Characteristic features of seismic harmonic tremor on volcanoes
    We recorded high-frequency (> 10 Hz) harmonic tremor with spectral gliding at Hekla Volcano in Iceland. Particle motion plots indicated a shallow tremor source. We observed up to two overtones beneath our Nyquist frequency of 50 Hz and could resolve a source of closely spaced pulses of very short duration (0.03-0.1 s) on zoomed seismograms. Volcanic tremor with fundamental frequencies above 5 Hz, frequency gliding and/or repetitive sources similar to our observations were observed on different volcanoes around the world. However, this frequency content, duration and occurrence of volcano-related tremor was not observed in the last 35 years of seismic observations at Hekla. Detailed analysis reveals that this tremor was related to helicopters passing the volcano. This study relates the GPS track of a helicopter with seismic recordings of the helicopter at various distances. We show the effect the distance, number of rotor blades and velocity of the helicopter has on the observed up and down glidings at up to 40 km distance. We highlight similarities and differences between volcano-related and helicopter tremor in order to help avoid misinterpretations.
    Scopus© Citations 29  507
  • Publication
    Moment tensor inversion for the source location and mechanism of long period (LP) seismic events from 2009 at Turrialba volcano, Costa Rica
    Long-period (LP) seismic events were recorded during the temporary installation of a broadband seismic network of 13 stations from March to September 2009 on Turrialba volcano, Costa Rica. Over 6000 LPs were extracted using a modified STA/LTA method and a family consisting of 435 similar LP events has been identified. For the first time at Turrialba volcano, full-waveform moment tensor inversion is performed to jointly determine the location and source mechanism of the events. The LPs in the family are likely to be caused by crack mechanisms dipping towards the southwest at angles of approximately 10 to 20°, located at shallow depths (< 800 m) below the active Southwest and Central craters. As the locations are so shallow, the most probable causes of crack mechanisms are hydrothermal fluids resonating within or 'pulsing' through a crack. The waveforms observed at the summit stations suggest a 'pulsing' mechanism, but source resonance with a high degree of damping is also possible.
      504Scopus© Citations 15
  • Publication
    Classification of long-term very long period (VLP) volcanic earthquakes at Whakaari/White Island volcano, New Zealand
    We have observed very long period earthquakes (VLPs) over the period 2007 to the end of 2019 at Whakaari/White Island volcano, New Zealand. The earthquakes exhibit similitude between waveforms which suggests repeating source locations and processes. VLPs recorded at two permanent stations were detected using waveform semblance and were then classified into two main families (F1 and F2) using a clustering analysis. The two families are characterized by ‘mirror image’ reverse waveform polarity suggesting that they are genetically related, but occur during different evolutionary phases of volcanic activity. F1 events occurred throughout the observation period, while F2 events mainly occurred as swarms that mark the onset of volcanic unrest. A detailed cluster analysis reveals possible sub-families implying slight temporal evolutions within a family. Our results add to our understanding of the volcanic magma–hydrothermal system at Whakaari/White Island indicating that relatively stable VLP sources may be exploited to improve monitoring for future unrest.[Figure not available: see fulltext.]
    Scopus© Citations 17  179
  • Publication
    Relating gas ascent to eruption triggering for the April 27, 2016, White Island (Whakaari), New Zealand eruption sequence
    The April 27, 2016 eruption sequence at White Island was comprised of 6 discrete eruptive events that occurred over a 35-min period. Seismicity included three episodes of VLP activity: the first occurring ~ 2 h and a second occurring 10 min prior to the first eruption. A third larger VLP event occurred just prior to the fourth eruption. A VLP source depth of 800–1000 m below the vent is obtained from an analysis of the waveform semblance, and a volumetric source is obtained from waveform inversion of the largest VLP event. Lag times between VLP occurrence and eruption onsets provide an opportunity to examine gas migration and stress transfer models as potential triggers to the eruptive activity. Plausible lag times for a deep gas pulse to the surface are obtained by application of a TOUGH2 computational model which suggests propagation times of 0.25–1.9 m/s and are informed by previously measured White Island rock porosities and permeabilities. Results suggest that pre-eruption VLP may be plausibly linked to advection of gas from the VLP source at a magmatic carapace located ~ 800–1000 m depth. Alternatively, the large VLP that occurred just prior to the fourth eruption may be linked to a quasi-dynamic or quasi-static stress perturbation.
    Scopus© Citations 36  360
  • Publication
    Quantifying strong seismic propagation effects in the upper volcanic edifice using sensitivity kernels
    In volcanic environments, the correct interpretation of the signals recorded by a seismic station is critical for a determination of the internal state of the volcano. Those signals contain information about both the seismic source and the properties of the path travelled by the seismic wave. Therefore, understanding the path effect is necessary for both source inversions and geophysical investigation of the volcanoes' properties at depth. We present an application of the seismic adjoint methodology and sensitivity kernel analysis to investigate seismic wave propagation effects in the upper volcanic edifice. We do this by performing systematic numerical simulations to calculate synthetic seismograms in two-dimensional models of Mount Etna, Italy, considering different wave velocity properties. We investigate the relationship between different portions of a seismogram and different parts of the structural volcano model. In particular, we examine the influence of known near-surface low-velocity volcanic structure on the recorded seismic signals. Results improve our ability to understand path effects highlighting the importance of the shallowest velocity structure in shaping the recorded seismograms and support recent studies that show that, although long-period seismic events are commonly associated with magma movements in resonant conduits, these events can be reproduced without the presence of fluids. We conclude that edifice heterogeneities impart key signatures on volcano seismic traces that must be considered when investigating volcano seismic sources.
    Scopus© Citations 2  123
  • Publication
    Helicopter location and tracking using seismometer recordings
    We use frequency domain methods usually applied to volcanic tremor to analyse ground based seismic recordings of a helicopter. We preclude misinterpretations of tremor sources and show alternative applications of our seismological methods. On a volcano, the seismic source can consist of repeating, closely spaced, small earthquakes. Interestingly, similar signals are generated by helicopters, due to repeating pressure pulses from the rotor blades. In both cases the seismic signals are continuous and referred to as tremor. As frequency gliding is in this case merely caused by the Doppler effect, not a change in the source, we can use its shape to deduce properties of the helicopter and its flight path. We show in this analysis that the number of rotor blades, rotor revolutions per minute (RPM), helicopter speed, flight direction, altitude and location can be deduced from seismometer recordings. Access to GPS determined flight path data from the helicopter offers us a robust way to test our location method.
    Scopus© Citations 12  494
  • Publication
    An Outlook on Seismic Diffraction Imaging Using Pattern Recognition
    A seismic image is formed by interactions of the seismic wavefield with geological interfaces, in the form of reflections, diffractions, and other coherent noise. While in conventional processing workflows reflections are favoured over diffractions, this is only beneficial in areas with uniform stratigraphy. Diffractions form as interactions of the wavefield with discontinuities and therefore can be used to image them. However, to image diffractions, they must first be separated from the seismic wavefield. Here we propose a pattern recognition approach for separation, employing image segmentation. We then compare this to two existing diffraction imaging methods, plane-wave destruction and f-k filtering. Image segmentation can be used to divide the image into pixels which share certain criteria. Here, we have separated the image first by amplitude using a histogram-based segmentation method, followed by edge detection with a Sobel operator to locate the hyperbola. The image segmentation method successfully locates diffraction hyperbola which can then be separated and migrated for diffraction imaging. When compared with plane-wave destruction and f-k filtering, the image segmentation method proves beneficial as it allows for identification of the hyperbolae without noise. However, the method can fail to identify hyperbolae in noisier environments and when hyperbolae overlap.
      290Scopus© Citations 7
  • Publication
    Origin of spurious single forces in the course mechanism of volcanic seismicity
    Single forces are often observed in the source mechanism of volcanic seismicity. However, their underlying causative processes are still doubtful. The reliability of single force observations must be assessed, prior to analyzing them in terms of physical mechanisms. Using numerical examples, we show that source mislocation and velocity mismodeling lead to strong spurious single forces. Layering in the velocity model produces converted S-waves and source mislocations modify the wavefield at the free surface (mainly through converted S- and surface waves). However, these waves can also be accurately reproduced in a homogeneous model by adding a vertical single force in the source mechanism, which mainly generates S-waves for large take-off angles. Hence approximate velocity models can lead to the appearance of strong single forces in source inversions. We conclude that, in moment tensor inversion, while single forces can be used in some cases to accommodate mismodeling errors, they cannot be reliably used to infer physical processes.
    Scopus© Citations 16  228
  • Publication
    Source separation on seismic data : application in a geophysical setting
    (Institute of Electrical and Electronic Engineers, 2012-05) ; ; ;
    This article gives a brief description of the Degenerate Unmixing Estimation Technique (DUET) and applies it in a geophysical setting. Source separation has not been fully addressed by geophysicists and is a crucial first step to locating simultaneous sources, which in turn helps with understanding the dynamics of the sources and their source mechanisms. DUET is applied to synthetic seismic signals. The source separation method works successfully to separate two contemporary explosive sources, and two simultaneous oblique tensile cracks in a 3D structural model of Mt Etna. The method is also applied to field recordings on Mt Etna from 2008. The method separates Long Period events from tremor, Long Period events from Volcano Tectonic events and different sources of tremor from each other.
      1826Scopus© Citations 11