Now showing 1 - 2 of 2
  • Publication
    Green Communications: Digital Predistortion for Wideband RF Power Amplifiers
    (IEEE, 2014-11-12) ;
    The RF PA, as one of the most essential components in any wireless system, suffers from inherent nonlinearities. The output of a PA must comply with the linearity requirement specified by the standards. Due to its satisfactory linearization capability, DPD has been widely accepted as one of the fundamental units in modern and future wideband wireless systems. With the help of this flexible digital technology, the inherent linearity problem of PAs operating in the saturation region can be significantly improved, which enables us, the wireless engineers, to create more suitable RF transceiver architectures to provide wireless access with better user experience (linearity perspective) and less power waste (power efficiency perspective). This moves us one more step towards the ultimate green communications. In this article, we discussed the DPD techniques in the context of linearizing nonlinear RF PAs. As the computing-horsepower and the transistor-density of digital IC increases while the cost per transistor decreases, the concept that uses digital enhancement techniques to eliminate active analog imperfects will gain more attention from both industry and academia.
      1048Scopus© Citations 164
  • Publication
    Low-Cost FPGA Implementation of Volterra Series-Based Digital Predistorter for RF Power Amplifiers
    (IEEE, 2010-04) ;
    This paper presents a low-complexity and low-cost hardware implementation of a Volterra series-based digital predistorter (DPD). This is achieved by introducing two novel model complexity reduction techniques into the system, namely, lookup table assisted gain indexing and time-division multiplexing for multiplier sharing. Experimental results show that this novel DPD implementation uses much less hardware resources, but still maintains excellent performance compared to conventional approaches.
      495Scopus© Citations 82