Now showing 1 - 3 of 3
  • Publication
    The performance of the interferon gamma assay when used as a diagnostic or quality assurance test in Mycobacterium bovis infected herds
    There are two different contexts in the Irish bTB eradication programme in which the interferon-gamma assay (IFN-γ) is applied. Firstly, the IFN-γ assay is applied routinely to high risk cohorts in herds with four or more reactors to the SICTT. The IFN-γ test is then carried out on blood samples submitted to the laboratory within 8 h of collection (diagnostic testing). Secondly, the use of the IFN-γ assay has recently been extended to test SICTT reactors as part of a general quality assurance (QA) scheme to monitor the performance of the SICTT. Blood samples from reactors are tested one day after blood collection (QA testing). In this study, we analysed the relative performance of the SICTT and IFN-γ when used in parallel as an 8 h diagnostic test and as a 24 h QA test on SICTT reactors. A total of 17,725 IFN-γ tests were included in the analysis (11,658 diagnostic tests and 6067 QA tests). Of the samples submitted for diagnostic testing, the proportion positive to IFN-γ decreased with the severity of interpretation of the SICTT result. Of the standard reactors that were tested with IFN-γ in the QA programme, 92.2% were positive to the IFN-γ test. Among animals that were SICTT −ve/IFN-γ +ve, 18.9% were positive at post-mortem compared to 11.8% of those that were SICTT +ve (standard reactor)/IFN-γ −ve. These results highlight the risk associated with retaining SICTT −ve/IFN-γ +ve animals, and suggest that prompt removal of these animals is necessary to reduce the potential for future transmission.
    Scopus© Citations 21  456
  • Publication
    Trends and predictors of large tuberculosis episodes in cattle herds in Ireland
    Persistence of bovine tuberculosis (bTB) in cattle is an important feature of Mycobacterium bovis infection, presenting either as herd recurrence or local persistence. One risk factor associated with the risk of recurrent episodes is the severity of a previous bTB episode (severity reflecting the number of bTB reactors identified during the episode). In this study, we have sought to identify predictors that can distinguish between small (less severe) and large (more severe) bTB episodes, and to describe nationally the severity of bTB episodes over time. The study included descriptive statistics of the proportion of episodes by severity from 2004 to 2015 and a case-control study. The case-control study population included all herds with at least one episode beginning in 2014 or 2015, with at least two full herd tests during the episode and a minimum herd-size of 60 animals. Case herds included study herds with at least 13 reactors whereas control herds had between 2 to 4 (inclusive) reactors during the first 2 tests of the episode. A logistic regression model was developed to identify risk factors associated with a large episode. Although there has been a general trend towards less severe herd bTB episodes in Ireland over time (2004-2015), the proportion of large episodes has remained relatively consistent. From the case-control study, the main predictors of a large episode were the year the episode started, increasing herd-size, previous exposure to bTB, increasing bTB incidence in the local area, an animal with a bTB lesion and a bTB episode in an associated herd. Herds that introduced more animals were more likely to have a smaller bTB episode, reflecting the reduced risk of within-herd transmission when an episode was due to an introduced infected bTB animal. Some of the risk factors identified in this study such as reactors in previous bTB episodes, herds with an associated herd undergoing a bTB episode, herds in high incidence areas etc. may help to target future policy measures to specific herds or animals for additional surveillance measures. This information has important policy implications.
    Scopus© Citations 11  297
  • Publication
    The History of In Vivo Tuberculin Testing in Bovines: Tuberculosis, a “One Health” Issue
    Tuberculosis (TB) is more than 3 million years old thriving in multiple species. Ancestral Mycobacterium tuberculosis gave rise to multiple strains including Mycobacterium bovis now distributed worldwide with zoonotic transmission happening in both directions between animals and humans. M. bovis in milk caused problems with a significant number of deaths in children under 5 years of age due largely to extrapulmonary TB. This risk was effectively mitigated with widespread milk pasteurization during the twentieth century, and fewer young children were lost to TB. Koch developed tuberculin in 1890 and recognizing the possibility of using tuberculin to detect infected animals the first tests were quickly developed. Bovine TB (bTB) control/eradication programmes followed in the late nineteenth century/early twentieth century. Many scientists collaborated and contributed to the development of tuberculin tests, to refining and optimizing the production and standardization of tuberculin and to determining test sensitivity and specificity using various methodologies and injection sites. The WHO, OIE, and EU have set legal standards for tuberculin production, potency assay performance, and intradermal tests for bovines. Now, those using tuberculin tests for bTB control/eradication programmes rarely, see TB as a disease. Notwithstanding the launch of the first-ever roadmap to combat zoonotic TB, many wonder if bTB is actually a problem? Is there a better way of dealing with bTB? Might alternative skin test sites make the test “better” and easier to perform? Are all tuberculins used for testing equally good? Why have alternative “better” tests not been developed? This review was prompted by these types of questions. This article attempts to succinctly summarize the data in the literature from the late nineteenth century to date to show why TB, and zoonotic TB specifically, was and still is important as a “One Health” concern, and that the necessity to reduce the burden of zoonotic TB, to save lives and secure livelihoods is far too important to await the possible future development of novel diagnostic assays for livestock before renewing efforts to eliminate it. Consequently, it is highly probable that the tuberculin skin test will remain the screening test of choice for farmed livestock for the considerable future.
    Scopus© Citations 51  477