Now showing 1 - 7 of 7
  • Publication
    Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks
    Background: Prediction of protein structures from their sequences is still one of the open grand challenges of computational biology. Some approaches to protein structure prediction, especially ab initio ones, rely to some extent on the prediction of residue contact maps. Residue contact map predictions have been assessed at the CASP competition for several years now. Although it has been shown that exact contact maps generally yield correct three-dimensional structures, this is true only at a relatively low resolution (3–4 Å from the native structure). Another known weakness of contact maps is that they are generally predicted ab initio, that is not exploiting information about potential homologues of known structure. Results: We introduce a new class of distance restraints for protein structures: multi-class distance maps. We show that C trace reconstructions based on 4-class native maps are significantly better than those from residue contact maps. We then build two predictors of 4-class maps based on recursive neural networks: one ab initio, or relying on the sequence and on evolutionary information; one template-based, or in which homology information to known structures is provided as a further input. We show that virtually any level of sequence similarity to structural templates (down to less than 10%) yields more accurate 4-class maps than the ab initio predictor. We show that template-based predictions by recursive neural networks are consistently better than the best template and than a number of combinations of the best available templates. We also extract binary residue contact maps at an 8 Å threshold (as per CASP assessment) from the 4-class predictors and show that the template-based version is also more accurate than the best template and consistently better than the ab initio one, down to very low levels of sequence identity to structural templates. Furthermore, we test both ab-initio and template-based 8 Å predictions on the CASP7 targets using a pre-CASP7 PDB, and find that both predictors are state-of-the-art, with the template-based one far outperforming the best CASP7 systems if templates with sequence identity to the query of 10% or better are available. Although this is not the main focus of this paper we also report on reconstructions of C traces based on both ab initio and template-based 4-class map predictions, showing that the latter are generally more accurate even when homology is dubious. Conclusion: Accurate predictions of multi-class maps may provide valuable constraints for improved ab initio and template-based prediction of protein structures, naturally incorporate multiple templates, and yield state-of-the- art binary maps. Predictions of protein structures and 8 Å contact maps based on the multi-class distance map predictors described in this paper are freely available to academic users at the url http://distill.ucd.ie/.
    Scopus© Citations 42  442
  • Publication
    Ab initio and homology based prediction of protein domains by recursive neural networks
    Background: Proteins, especially larger ones, are often composed of individual evolutionary units, domains, which have their own function and structural fold. Predicting domains is an important intermediate step in protein analyses, including the prediction of protein structures. Results: We describe novel systems for the prediction of protein domain boundaries powered by Recursive Neural Networks. The systems rely on a combination of primary sequence and evolutionary information, predictions of structural features such as secondary structure, solvent accessibility and residue contact maps, and structural templates, both annotated for domains (from the SCOP dataset) and unannotated (from the PDB). We gauge the contribution of contact maps, and PDB and SCOP templates independently and for different ranges of template quality. We find that accurately predicted contact maps are informative for the prediction of domain boundaries, while the same is not true for contact maps predicted ab initio. We also find that gap information from PDB templates is informative, but, not surprisingly, less than SCOP annotations. We test both systems trained on templates of all qualities, and systems trained only on templates of marginal similarity to the query (less than 25% sequence identity). While the first batch of systems produces near perfect predictions in the presence of fair to good templates, the second batch outperforms or match ab initio predictors down to essentially any level of template quality. We test all systems in 5-fold cross-validation on a large non-redundant set of multi-domain and single domain proteins. The final predictors are state-of-the-art, with a template-less prediction boundary recall of 50.8% (precision 38.7%) within ± 20 residues and a single domain recall of 80.3% (precision 78.1%). The SCOP-based predictors achieve a boundary recall of 74% (precision 77.1%) again within ± 20 residues, and classify single domain proteins as such in over 85% of cases, when we allow a mix of bad and good quality templates. If we only allow marginal templates (max 25% sequence identity to the query) the scores remain high, with boundary recall and precision of 59% and 66.3%, and 80% of all single domain proteins predicted correctly. Conclusion: The systems presented here may prove useful in large-scale annotation of protein domains in proteins of unknown structure. The methods are available as public web servers at the address: http://distill.ucd.ie/shandy/ and we plan on running them on a multi-genomic scale and make the results public in the near future.
    Scopus© Citations 15  751
  • Publication
    Protein structural motif prediction in multidimensional φ-ψ space leads to improved secondary structure prediction
    A significant step towards establishing the structure and function of a protein is the prediction of the local conformation of the polypeptide chain. In this article, we present systems for the prediction of three new alphabets of local structural motifs. The motifs are built by applying multidimensional scaling (MDS) and clustering to pair-wise angular distances for multiple φ-ψ angle values collected from high-resolution protein structures. The predictive systems, based on ensembles of bidirectional recurrent neural network architectures, and trained on a large non-redundant set of protein structures, achieve 72%, 66%, and 60% correct motif prediction on an independent test set for di-peptides (six classes), tri-peptides (eight classes) and tetra-peptides (14 classes), respectively, 28–30% above baseline statistical predictors. We then build a further system, based on ensembles of two-layered bidirectional recurrent neural networks, to map structural motif predictions into a traditional 3-class (helix, strand, coil) secondary structure. This system achieves 79.5% correct prediction using the “hard” CASP 3-class assignment, and 81.4% with a more lenient assignment, outper- forming a sophisticated state-of-the-art predictor (Porter) trained in the same experimental conditions. The structural motif predictor is publicly available at: http://distill.ucd.ie/porter+/.
    Scopus© Citations 40  337
  • Publication
    Template-based Recognition of Natively Disordered Regions in Proteins
    (University College Dublin. School of Computer Science and Informatics, 2012-04) ; ;
    Disordered proteins are increasingly recognised as a fundamental component of the cellular machinery. Parallel to this, the prediction of protein disorder by computational means has emerged as an aid to the investigation of protein functions. Although predictors of disorder have met with considerable success, it is increasingly clear that further improvements are most likely to come from additional sources of information, to complement patterns extracted from the primary sequence of a protein. In this article, a system for the prediction of protein disorder that relies both on sequence information and on structural information from homologous proteins of known structure (templates) is described. Structural information is introduced directly (as a further input to the predictor) and indirectly through highly reliable template-based predictions of structural features of the protein. The predictive system, based on Support Vector Machines, is tested by rigorous 5-fold cross validation on a large, non-redundant set of proteins extracted from the Protein Data Bank. In these tests the introduction of structural information, which is carefully weighed based on sequence identity between homologues and query, results in large improvements in prediction accuracy. The method, when re-trained on a 2004 version of the PDB, clearly outperforms the algorithms that ranked top at the 2006 CASP competition.
      59
  • Publication
    Distill : a suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins
    We describe Distill, a suite of servers for the prediction of protein structural features: secondary structure; relative solvent accessibility; contact density; backbone structural motifs; residue contact maps at 6, 8 and 12 Angstrom; coarse protein topology. The servers are based on large-scale ensembles of recursive neural networks and trained on large, up-to-date, non- redundant subsets of the Protein Data Bank. Together with structural feature predictions, Distill includes a server for prediction of Cα traces for short proteins (up to 200 amino acids). The servers are state-of-the-art, with secondary structure predicted correctly for nearly 80% of residues (currently the top performance on EVA), 2-class solvent accessibility nearly 80% correct, and contact maps exceeding 50% precision on the top non-diagonal contacts. A preliminary implementation of the predictor of protein Cα traces featured among the top 20 Novel Fold predictors at the last CASP6 experiment as group Distill (ID 0348). The majority of the servers, including the Cα trace predictor, now take into account homology information from the PDB, when available, resulting in greatly improved reliability. All predictions are freely available through a simple joint web interface and the results are returned by email. In a single submission the user can send protein sequences for a total of up to 32k residues to all or a selection of the servers. Distill is accessible at the address: http://distill.ucd.ie/distill/.
    Scopus© Citations 84  576
  • Publication
    Protein Backbone Angle Prediction in Multidimensional φ-ψ Space
    (University College Dublin. School of Computer Science and Informatics, 2006-01-20) ; ;
    A significant step towards establishing the structure and function of a protein is the prediction of the local conformation of the polypeptide chain. In this article we present systems for the prediction of 3 new alphabets of local structural motifs. The motifs are built by applying multidimensional scaling (MDS) and clustering to pair-wise angular distances for multiple φ-ψ angle values collected from high-resolution protein structures. The predictive systems, based on ensembles of bidirectional recurrent neural network architectures, and trained on a large non-redundant set of protein structures, achieve 72%, 66% and 60% correct structural motif prediction on an independent test set for di-peptides (6 classes), tripeptides (8 classes) and tetra-peptides (14 classes), respectively, 28-30% above base-line statistical predictors. To demonstrate that structural motif predictions contain relevant structural information, we build a further system, based on ensembles of two-layered bidirectional recurrent neural networks, to map structural motif predictions into traditional 3-class (helix, strand, coil) secondary structure. This system achieves 79.5% correct prediction using the “hard” CASP 3-class assignment, and 81.4% with a more lenient assignment, outperforming a sophisticated state-of-the-art predictor (Porter) trained in the same experimental conditions. All the predictive systems will be provided free of charge to academic users and made publicly available at the address http://distill.ucd.ie/.
      45
  • Publication
    Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information
    Background : Structural properties of proteins such as secondary structure and solvent accessibility contribute to three-dimensional structure prediction, not only in the ab initio case but also when homology information to known structures is available. Structural properties are also routinely used in protein analysis even when homology is available, largely because homology modelling is lower throughput than, say, secondary structure prediction. Nonetheless, predictors of secondary structure and solvent accessibility are virtually always ab initio. Results: Here we develop high-throughput machine learning systems for the prediction of protein secondary structure and solvent accessibility that exploit homology to proteins of known structure, where available, in the form of simple structural frequency profiles extracted from sets of PDB templates. We compare these systems to their state-of-the-art ab initio counterparts, and with a number of baselines in which secondary structures and solvent accessibilities are extracted directly from the templates. We show that structural information from templates greatly improves secondary structure and solvent accessibility prediction quality, and that, on average, the systems significantly enrich the information contained in the templates. For sequence similarity exceeding 30%, secondary structure prediction quality is approximately 90%, close to its theoretical maximum, and 2-class solvent accessibility roughly 85%. Gains are robust with respect to template selection noise, and significant for marginal sequence similarity and for short alignments, supporting the claim that these improved predictions may prove beneficial beyond the case in which clear homology is available. Conclusion: The predictive system are publicly available at the address http://distill.ucd.ie
    Scopus© Citations 98  449