Now showing 1 - 5 of 5
  • Publication
    Decision support beyond total savings—Eligibility and potential savings for individual participants from changes in the national surveillance strategy for bovine viral diarrhoea (BVD) in Ireland
    Surveillance and management of livestock diseases is often evaluated with reference to expected sector-wide costs. In contrast, we calculate losses or savings for individual herd owners of a change in monitoring strategy during a national cattle disease eradication programme: bovine viral diarrhoea (BVD) in Ireland. The alternative strategy differs in how the disease is identified; by its sample- rather than census-based approach; and by its greater cost per test. We examined the costs faced by each breeding herd if testing were conducted using serology on a sample of young stock, in contrast to the current method of tissue-tag testing of all newborn calves. Following best knowledge of the likely costs, the following input values were used: i) €2.50 per test for tissue-tag testing and €7.66 for serology, ii) serology conducted on a sample of 10 young stock per management group from either the 6–12 month or 9–18 month cohorts; iii) 3 scenarios for the number of management groups: one per herd (M∞), one per 100 cows (M100) and one per 50 cows (M50). We found that many herds would often not be able to supply a suitable sample of young stock for serology or would face higher testing costs than when using tissue tag testing. The largest number (25%) of herds would benefit from participating in the change if sampling were done in October. These could annually save between €2.1 million under M∞ and €0.8 million under M50 (€108 - €49 per herd). However, analysing herd-level data we found that 90% of all Irish breeding herds would save less than €1.42 per cow or €99 in total per annum under M∞ and €0.59 per cow or €36 in total under M50. In a sensitivity analysis, we allowed serology costs to vary between €2 and €10 per animal. Herds at the 10 t h percentile of most savings made from switching would save at most €155 (M∞ at €2 per serology test) but would not save anything under M50 at costs ≥ €10. We conclude that, under these assumptions, the expected reduction in testing costs for the majority of beneficiaries would barely outweigh the practical implications of the strategy switch or the risks to the eradication programme associated with sample based surveillance. This study does not assess the cost-effectiveness of alternatives post-eradication.
      366Scopus© Citations 3
  • Publication
    Eradicating BVD, reviewing Irish programme data and model predictions to support prospective decision making
    Bovine Viral Diarrhoea is an infectious production disease of major importance in many cattle sectors of the world. The infection is predominantly transmitted by animal contact. Postnatal infections are transient, leading to immunologically protected cattle. However, for a certain window of pregnancy, in utero infection of the foetus results in persistently infected (PI) calves being the major risk of BVD spread, but also an efficient target for controlling the infection. There are two acknowledged strategies to identify PI animals for removal: tissue tag testing (direct; also known as the Swiss model) and serological screening (indirect by interpreting the serological status of the herd; the Scandinavian model). Both strategies are effective in reducing PI prevalence and herd incidence. During the first four years of the Irish national BVD eradication programme (2013–16), it has been mandatory for all newborn calves to be tested using tissue tag testing. During this period, PI incidence has substantially declined. In recent times, there has been interest among stakeholders in a change to an indirect testing strategy, with potential benefit to the overall programme, particularly with respect to cost to farmers. Advice was sought on the usefulness of implementing the necessary changes. Here we review available data from the national eradication programme and strategy performance predictions from an expert system model to quantify expected benefits of the strategy change from strategic, budgetary and implementation points of view. Key findings from our work include (i) drawbacks associated with changes to programme implementation, in particular the loss of epidemiological information to allow real-time monitoring of eradication progress or to reliably predict time to eradication, (ii) the fact that only 25% of the herds in the Irish cattle sector (14% beef, 78% dairy herds) would benefit financially from a change to serosurveillance, with half of these participants benefiting by less than EUR 75 per annum at herd level or an average of EUR 1.22 per cow, and (iii) opportunities to enhance the effectiveness of the current programme, particularly in terms of time to eradication, through enforced compliance with PI removal as currently outlined in programme recommendations. The assembled information provides scientific arguments, contributing to an informed debate of the pros and cons of a change in eradication strategy in Ireland.
    Scopus© Citations 31  651
  • Publication
    Quantifying the role of Trojan dams in the between-herd spread of bovine viral diarrhoea virus (BVDv) in Ireland
    A compulsory national programme to eradicate bovine viral diarrhoea virus (BVDv) began in Ireland on 1 January, 2013. The objective of the current study was to quantify the role of Trojan dams (animal(s) not persistently infected (PI) with BVDv but carrying PI foetus(es) and introduced to the herd while pregnant with the PI foetus(es)) in the farm-to-farm spread of BVDv in Ireland, and to identify herd-level risk factors for producing or introducing a Trojan dam. The study population included all BVD+ calves born in Ireland between 1 January, 2013 and 31 December, 2015, along with their dams. BVD+ calves included all calves on the national programme database with an initial positive or inconclusive virus test, without a confirmatory re-test (status BVDPOS) and those with an initial positive or inconclusive test and a positive confirmatory test (status BVDPI). The Trojan status of dams was determined after considering their history of movement and of potential BVDV exposure, relative to a defined window of susceptibility (WOS; days 30–120 of gestation). During 2013–15, there were 29,422 BVD+ birth events to dams that were not themselves BVD+, including 2526 (8.6%) most-likely attributable to Trojan dams. The percentage of these birth events attributable to Trojan dams was significantly different (P < 0.001) between years, being 7.1% in 2013, 9.2% in 2014 and 10.6% in 2015. During 2013, in 9.9% of herds with one or more BVD+ birth to non-BVD+ dams, at least one of these births was attributed to a Trojan dam. In 2014 and 2015, the percentages were 11.8% and 13.3%, respectively. In 2013, in 7.8% of herds with one or more BVD+ birth to non-BVD+ dams, all of these births were attributable to Trojan dams. In 2014 and 2015, the percentages were 9.2% and 10.7%, respectively. A logistic GEE regression identified dam parity, herd size and an interaction between herd type and season as significant predictors for the birth of a BVD+ calf to a Trojan dam. Significant predictors for the sale of a Trojan dam from BVD+ herds included those selling more than one pregnant female and those with more than 2 BVD+ animals in the herd. Introduction of pregnant adult females is a potential source of BVD+ births in BVD-free herds and may add to the burden of infection in non-BVD-free herds. Addressing this route of transmission will be critical for herds that are now free of infection and wish to continue to purchase animals without introducing it.
    Scopus© Citations 20  356
  • Publication
    The bovine tuberculosis cluster in north County Sligo during 2014-16
    Background: Bovine tuberculosis (bTB, caused by infection with Mycobacterium bovis) is endemic in the Irish cattle population, and the subject of a national eradication programme since the late 1950s. During 2014, a substantial area-level bTB outbreak developing in north County Sligo, necessitating the need for an enhanced response. This paper describes this outbreak, the response that was undertaken and some lessons learned. Results: In the north Sligo area between 2014 and 2016, 23 (31.9%) of restricted herds had 4 or more reactors to the single intradermal comparative tuberculin test (SICTT)/animals with bTB lesions disclosed during the restriction, and the majority (55.5%) of test-positive animals were identified as standard reactors to the SICTT. The herds restricted during 2014–16 were typically larger than other herds in the study area and introduced more animals during 2013. M. bovis was also detected in local badgers, but not deer. Conclusion: This paper describes a substantial outbreak in north County Sligo over a 3-year period. A coordinated area-based approach was a key feature of the outbreak, and substantial resources were applied to bring the outbreak under control. No definitive source was identified, nor reasons why a substantial number of herds were infected over a relatively short period. A coordinated regional approach was taken, and a number of lessons were learned including the need for urgency, for a team-based approach, for a consistent message when dealing with the public, for an area-based approach, for a degree of flexibility for the breakdown manager, and for molecular tools to assist in answering key questions relating to the source and spread of M. bovis to many herds during this bTB outbreak.
      257Scopus© Citations 1
  • Publication
    Potential infection-control benefit of measures to mitigate the risk posed by Trojan dams in the Irish BVD eradication programme
    In the epidemiology of Bovine Viral Diarrhoea (BVD), Trojan dams (animals that are not persistently infected (PI) with BVD (BVDv) virus but carrying PI foetuses) are a vehicle through which infection can be transmitted. We investigated the degree to which restricting movement of cattle from BVDv infected herds would prevent Trojan births in other herds (effectiveness) and the extent to which this would reduce other, non-Trojan, movements (proportionality). We focussed on Irish herds with BVD + animal(s) present during 2014 and/or 2015. The effect of restricting movements of female animals over 12 months of age from these herds was compared with data collected on Trojan dams that calved in 2015. Four different potential restriction lengths were considered, varying from the period when a BVD + animal was present in the herd, to extending this to 12 months after removal of the last BVD + animal. In terms of effectiveness, none of the four restriction measures evaluated was effective at preventing the movement of all Trojan dams. Between 18.3% and 37.3% of Trojan births in 2015 would have been prevented under the proposed measures, and all Trojan births would have been prevented in between 14.4% and 32.5% of herds with BVD + births. In terms of proportionality, between 4.4% and 15.4% of all females > 12 months of age that moved between herds during 2015 would have been prevented from moving, and between 3.5% and 10.1% of Irish herds with at least one such movement would have been affected. These results show how measures to control the movement of Trojan dams should be targeted in a way that fits the Irish context and reduces the spread of BVDv, without unduly impacting other trade.
    Scopus© Citations 5  359