Now showing 1 - 10 of 43
  • Publication
    Investigating the behaviour of fluid-filled polyethylene containers under base drop impact: A combined experimental/numerical approach
    In this work, the behaviour of fluid-filled plastic containers under base drop impact is investigated using a combined experimental/numerical approach. In addition, theoretical predictions from two approaches, waterhammer theory and a mass-spring model, are also given. Experimental tests are conducted using a specially designed rig for testing plastic containers (bottles). Tested containers are fully instrumented with pressure transducers and strain gauges. The experiments are simulated using a two-system fluid-structure interaction procedure based on the Finite Volume Method. Good agreement is found between measured and predicted pressure and strain histories. Results obtained are in favour of waterhammer theory.
    Scopus© Citations 20  683
  • Publication
    Mode I fracture toughness of co-cured and secondary bonded composite joints
    The mode I fracture toughness of a single co-cured and two secondary bonded joint systems were determined using the double cantilever beam test. The initiation values of fracture toughness from the PTFE film insert and a mode I crack-tip were considered as well as propagation values. It was found that the starting defect had a large influence on the initiation values for fracture toughness. It was also found that the two secondary bonded systems predominantly resulted in cohesive failure while the co-cured joiailed interfacially. Thermogravimetric analysis coupled with mass-spectrometry was used to show how moisture in the composite prepreg and adhesive affected the toughness of the joints. Microscopy methods were used to gain further insight into the damage mechanisms of the three joint systems.
      586Scopus© Citations 30
  • Publication
    The mechanical properties of polycrystalline diamond as a function of strain rate and temperature
    Polycrystalline diamond (PCD) materials are used in various applications, mainly as cutting tools for machining non-ferrous metals and non-metallic materials and for rock drilling operations. A better knowledge of their mechanical properties is of fundamental importance to PCD manufacturers and end users. In order to understand and predict the behaviour and structural integrity of the tools containing PCD, it is first necessary to study the behaviour of the material as a function of loading rate and temperature. In this paper, material behaviour is determined under testing conditions which correspond more closely to those in actual drilling, which is a significant improvement over investigations to date. Young’s modulus determined by four-point bending and a split-Hopkinson pressure bar apparatus was relatively constant with the rate, while a consistent decrease was observed with increase of temperature. The flexural strength was found to increase with the temperature, while decreasing with an increase in rate.
    Scopus© Citations 22  1769
  • Publication
    Development of a finite volume contact solver based on the penalty method
    This paper describes the development and application of a frictionless contact stress solver based on the cell-centred finite volume method. The contact methodology, implemented in the open-source software OpenFOAM, is derived from the penalty method commonly used in finite element contact algorithms. The solver is verified on two benchmark tests using the available Hertzian analytical solutions.
    Scopus© Citations 35  928
  • Publication
    A Lagrangian Cell-Centred Finite Volume Method for Metal Forming Simulation
    The current article presents a Lagrangian cell-centred finite volume solution methodology for simulation of metal forming processes. Details are given of the mathematical model in updated Lagrangian form, where a hyperelastoplastic J2 constitutive relation has been employed. The cell-centred finite volume discretisation is described, where a modified discretised is proposed to alleviate erroneous hydrostatic pressure oscillations; an outline of the memory efficient segregated solution procedure is given. The accuracy and order of accuracy of the method is examined on a number of 2-D and 3-D elastoplastic benchmark test cases, where good agreement with available analytical and finite element solutions is achieved.
    Scopus© Citations 20  838
  • Publication
    Extrusion process by finite volume method using OpenFoam software
    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process
    Scopus© Citations 5  943
  • Publication
    Fracture properties of PCBN as a function of loading rate and temperature
    Polycrystalline Cubic Boron Nitride (PCBN) is a super-hard material used in some of the most demanding material removal operations today. These include turning of hardened steels, as well as the machining of highly abrasive alloys. In these applications the tools are subjected to high operating temperatures, abrasive and impact loading. This can lead to the brittle fracture of the tool. Accurate determination of the fracture toughness and mechanical properties of PCBN under a wide range of operating conditions is therefore essential in order to evaluate the performance of the tool under these highly demanding conditions. For this study, a laboratory scale three point bend test rig has been used for the fracture tests. The fracture toughness of two different grades of PCBN are measured at a range of loading rates and temperatures corresponding to the actual in-service conditions. The results show the measured properties of these materials vary with both loading rate and temperature. The fracture surfaces of the specimens are examined using scanning electron microscopy to determine dominant fracture mechanisms
    Scopus© Citations 4  389
  • Publication
    Effect of prepreg storage humidity on the mixed-mode fracture toughness of a co-cured composite joint
    The present work investigated the effect of the level of prepreg moisture content on the mixed-mode fracture toughness of a co-cured composite joint. It was found that moisture was stored in the prepreg as either free or bound water. It was also shown that the prepreg stores moisture from high humidity environments as free water, while the level of bound water remains unaffected. The excessive moisture was shown to plasticise the adhesive, lowering the glass transition temperature. The fracture toughness decreased under mode I and mode II loading as the humidity level was increased. The mixed-mode toughness also reduced with increasing storage humidity. However, the measured mixed-mode fracture toughness never reduced below that of the joints fabricated using the as-received material. This indicates that the moisture has a more pronounced effect on the bulk properties of the adhesive rather than on the interfacial adhesion between the composite and adhesive.
    Scopus© Citations 39  750
  • Publication
    Accurate prediction of blood flow transients : a fluid-structure interaction approach
    (Computational & Mathematical Biomedical Engineering (CMBE), 2009-07-01) ; ;
    Numerical studies are widely employed in establishing blood flow transients in arteries. Unfortunately, many of these are based on rigid arterial geometries where the physiological interaction between the flowing blood and the dynamics of a deforming arterial wall is ignored. Although many recent studies have adopted a fluid-structure interaction (FSI) approach, they lack the necessary validation and, thus, cannot guarantee the accuracy of their predictions. This work employs a well-validated FSI model to establish the dependency of WSS transients on arterial flexibility and predict flow transients in arterial geometries. Results show a high dependency of WSS transients on arterial wall flexibility, with hoop strains of as low as 0.15% showing significant differences in these transients compared to that seen in a rigid geometry. It is also shown that flow in the atherosclerosis susceptible regions of the vascular tree is characterised by a highly disturbed flow. In these regions, WSS magnitudes are at their lowest, while the WSS spatial gradients, rate of change and oscillatory shear index are at their highest.
      510