Now showing 1 - 2 of 2
  • Publication
    Investigating the source characteristics of long-period (LP) seismic events recorded on Piton de la Fournaise volcano, La Réunion
    Magmatic and hydrothermal processes play a significant role in generating seismicity at active volcanoes. These signals can be recorded at the surface and can be used to obtain an insight into the volcano's internal dynamics. Long period (LP) events are of particular interest as they often accompany or precede volcanic eruptions, but they are still not well understood. Piton de la Fournaise volcano, La Réunion Island, is one of the most active volcanoes in the world however LP events are rarely recorded there. A seismic network of 20 broadband seismometers has been operational on Piton de la Fournaise volcano since November 2009. Between November 2009 and January 2011 the volcano erupted five times, but only 15 LP events were recorded. Three of these eruptions were preceded by LP events, and several LP events were recorded during an intrusive phase. A family of three repeating LP events exists within the dataset. In order to characterize these events we locate and perform moment tensor inversion on the LP family. The LP events are located within the summit crater at shallow depths (< 200 m below the surface). Inversions show that the source mechanism is best represented by a tensile crack with horizontal crack geometry. We also investigate the relationship between LP occurrence and eruptive characteristics (size of the eruption, deformation of the edifice, etc.), and we find that the events exist only during flank eruptions and can be generated by the activity of the hydrothermal system and/or by the deformation inside the crater.
      528Scopus© Citations 13
  • Publication
    Source mechanism of long period events recorded by a high density seismic network during the 2008 eruption on Mount Etna
    129 Long Period (LP) events, divided into two families of similar events, were recorded by the 50 stations deployed on Mount Etna in the second half of June 2008. During this period lava was flowing from a lateral fracture after a summit strombolian eruption. In order to understand the mechanisms of these events, we perform moment tensor inversions. Inversions are initially kept unconstrained to estimate the most likely mechanism. Numerical tests show that unconstrained inversion leads to reliable moment tensor solutions because of the close proximity of numerous stations to the source positions. However, single forces cannot be accurately determined as they are very sensitive to uncertainties in the velocity model. Constrained inversions for a crack, a pipe or an explosion then allow us to accurately determine the structural orientations of the source mechanisms. Both numerical tests and LP event inversions emphasise the importance of using stations located as close as possible to the source. Inversions for both families show mechanisms with a strong volumetric component. These events are most likely generated by cracks striking SW-NE for both families and dipping 70 degrees SE (Family 1) and 50 degrees NW (Family 2). For Family 1 events, the crack geometry is nearly orthogonal to the dike-like structure along which events are located, while for Family 2 the location gave two pipe-like bodies which belong to the same plane as the crack mechanism. The orientations of the cracks are consistent with local tectonics, which shows a SW-NE weakness direction. The LP events appear to be a response to the lava fountain occurring on the 10th of May, 2008 as opposed to the flank lava flow.
    Scopus© Citations 34  342