Now showing 1 - 3 of 3
  • Publication
    Identifying damage in a bridge by analysing rotation response to a moving load
    This article proposes a bridge damage detection method using direct rotation measurements. Initially, numerical analyses are carried out on a one-dimensional (1D) simply supported beam model loaded with a single moving point load to investigate the sensitivity of rotation as a main parameter for damage identification. As a result of this study, the difference in rotation measurements due to a single moving point load obtained for healthy and damaged states is proposed as a damage indicator. A relatively simple laboratory experiment is conducted on a 3-m long simply supported beam structure to validate the results obtained from the numerical analysis. The case of multi-axle vehicles is investigated through numerical analyses of a 1D bridge model and a theoretical basis for damage detection is presented. Finally, a sophisticated 3D dynamic finite element model of a 20-m long simply supported bridge structure is developed by an independent team of researchers and used to test the robustness of the proposed damage detection methodology in a series of blind tests. Rotations from an extensive range of damage scenarios were provided to the main team who applied their methods without prior knowledge of the extent or location of the damage. Results from the blind test simulations demonstrate that the proposed methodology provides a reasonable indication of the bridge condition for all test scenarios.
      330Scopus© Citations 27
  • Publication
    A bridge monitoring tool based on bridge and vehicle accelerations
    (Taylor and Francis, 2014-04-01) ;
    Previous research on damage detection based on the response of a structure to a moving load has reported decay in accuracy with increasing load speed. Using a 3D vehicle–bridge interaction model, this paper shows that the area under the filtered acceleration response of the bridge increases with increasing damage, even at highway load speeds. Once a datum reading is established, the area under subsequent readings can be monitored and compared with the baseline reading, if an increase is observed it may indicate the presence of damage. The sensitivity of the proposed approach to road roughness and noise is tested in several damage scenarios. The possibility of identifying damage in the bridge by analysing the acceleration response of the vehicle traversing it is also investigated. While vehicle acceleration is shown to be more sensitive to road roughness and noise and therefore less reliable than direct bridge measurements, damage is successfully identified in favourable scenarios.
      562Scopus© Citations 25
  • Publication
    A discussion on the merits and limitations of using drive-by monitoring to detect localised damage in a bridge
    Given the large number of bridges that currently have no instrumentation, there are obvious advantages in monitoring the condition of a bridge by analysing the response of a vehicle crossing it. As a result, the last two decades have seen a rise in the research attempting to solve the problem of identifying damage in a bridge from vehicle measurements. This paper examines the theoretical feasibility and practical limitations of a drive-by system in identifying damage associated to localized stiffness losses. First, the nature of the damage feature that is sought within the vehicle response needs to be characterized. For this purpose, the total vehicle response is considered to be made of ¿static¿ and ¿dynamic¿ components, and where the bridge has experienced a localized loss in stiffness, an additional ¿damage¿ component. Understanding the nature of this ¿damage¿ component is crucial to have an informed discussion on how damage can be identified and localised. Leveraging this new understanding, the authors propose a wavelet-based drive-by algorithm. By comparing the effect of the ¿damage¿ component to other key effects defining the measurements such as ¿vehicle speed¿, the ¿road profile¿ and ¿noise¿ on a wavelet contour plot, it is possible to establish if there is a frequency range where drive-by can be successful. The algorithm uses then specific frequency bands to improve the sensitivity to damage with respect to limitations imposed by Vehicle-Bridge vibrations. Recommendations on the selection of the mother wavelet and frequency band are provided. Finally, the paper discusses the impact of noise and road profile on the ability of the approach to identify damage and how periodic measurements can be effective at monitoring localised stiffness changes. 
      273Scopus© Citations 79