Now showing 1 - 2 of 2
  • Publication
    XGboost-based Method for Seizure Detection in Mouse Models of Epilepsy
    Epilepsy is a chronic neurological disease which affects over 50 million people worldwide [1], caused by the disruption of the finely tuned inhibitory and excitatory balance in brain networks, manifesting clinically as seizures. Electroencephalographic (EEG) monitoring in rodent disease models of epilepsy is critical in the understanding of disease mechanisms and the development of anti-seizure drugs. However, the visual annotation of EEG traces is time-consuming, and is complicated by different models and seizure types. Automated annotation systems can help to solve these problems by reducing expert annotation time and increasing the throughput and reliability of seizure quantification. As machine learning is becoming increasingly popular for modelling sequential signals such as EEG, several researchers have tried machine learning to detect seizures in EEG traces from mouse models of epilepsy. Most existing work [2], [3] can only detect seizures in single mouse models of epilepsy and research on multiple mouse models has been limited to-date.
      79Scopus© Citations 1
  • Publication
    Random Forest-based Algorithm for Sleep Spindle Detection in Infant EEG
    Sleep spindles are associated with normal brain development, memory consolidation and infant sleep-dependent brain plasticity and can be used by clinicians in the assessment of brain development in infants. Sleep spindles can be detected in EEG, however, identifying sleep spindles in EEG recordings manually is very time-consuming and typically requires highly trained experts. Research on the automatic detection of sleep spindles in infant EEGs has been limited to-date. In this study, we present a novel supervised machine learning-based algorithm to detect sleep spindles in infant EEG recordings. EEGs collected from 141 ex-term born infants and 6 ex-preterm born infants, recorded at 4 months of age (adjusted), were used to train and test the algorithm. Sleep spindles were annotated by experienced clinical physiologists as the gold standard. The dataset was split into training (81 ex-term), validation (30 ex-term), and testing (30 ex-term + 6 ex-preterm) set. 15 features were selected for input into a random forest algorithm. Sleep spindles were detected in the ex-term infant EEG test set with 92.1% sensitivity and 95.2% specificity. For ex-preterm born infants, the sensitivity and specificity were 80.3% and 91.8% respectively. The proposed algorithm has the potential to assist researchers and clinicians in the automated analysis of sleep spindles in infant EEG.
    Scopus© Citations 11  404