Now showing 1 - 10 of 30
  • Publication
    Small-Signal Stability Analysis of Numerical Integration Methods
    (Institute of Electrical and Electronics Engineers, 2022-11) ; ;
    The paper provides a novel framework to study the accuracy and stability of numerical integration schemes when employed for the time domain simulation of power systems. A matrix pencil-based approach is adopted to evaluate the error between the dynamic modes of the power system and the modes of the approximated discrete-time system arising from the application of the numerical method. The proposed approach can provide meaningful insights on how different methods compare to each other when applied to a power system, while being general enough to be systematically utilized for, in principle, any numerical method. The framework is illustrated for a handful of well-known explicit and implicit methods, while simulation results are presented based on the WSCC 9-bus system, as well as on a 1,479-bus dynamic model of the All-Island Irish Transmission System.
    Scopus© Citations 10  25
  • Publication
    Model-Independent Derivative Control Delay Compensation Methods for Power Systems
    The paper examines the effectiveness of utilizing the derivatives of time delayed, wide-area signals in mitigating their destabilizing impact on power system dynamic response. In particular, the paper discusses two derivative control-based delay compensation methods, namely proportional-derivative (PD) and predictor-based delay compensation. The two methods are compared in terms of their open-loop signal fidelity and their impact on the closed-loop system stability. The paper also provides a technique to carry out small-signal stability analysis with inclusion of derivative control based compensation, which leads to a Neutral Time-Delay System (NTDS). In addition, we provide a new theorem on the stability of the NTDS. Finally, nonlinear time domain simulations and eigenvalue analysis based on the IEEE 14-bus and New England 39-bus systems were carried out for the sake of comparison of the two delay compensation methods.
    Scopus© Citations 14  24
  • Publication
    Curvature-Based Control for Low-Inertia Systems
    (Institute of Electrical and Electronics Engineers, 2022-09) ; ; ;
    This letter proposes a simple and inexpensive control of distributed energy resources aimed at improving the power system dynamic performance. The rationale behind the proposed control relies on a recent interpretation of the frequency in the differential geometry framework. A comparison with well-established controls in terms of eigensensitivity and time-domain performance is carried out to show the effectiveness of the proposed control.
    Scopus© Citations 4  50
  • Publication
    A discrete model for force-based elasticity and plasticity
    The article presents a mathematical model that simulates the elastic and plastic behaviour of discrete systems representing isotropic materials. The systems consist of one lattice of nodes connected by edges and a second lattice with nodes placed at the centres of the existing edges. The derivation is based on the assumption that the kinematics of the second lattice is induced by the kinematics of the first, and uses stored energies in edges of both lattices to derive a edge forces in the first lattice. This leads to a non-linear system of algebraic equations describing elasticity and plasticity in lattices. A numerical solution to the non-linear system is proposed by providing a matrix formulation necessary for software implementation. An illustrative example is given to justify the formulation and demonstrate the system behaviour.
    Scopus© Citations 1  13
  • Publication
    A dynamic behavioral model of the long-term development of solar photovoltaic generation driven by feed-in tariffs
    This work aims to assess the impact of renewable energy incentives, particularly that of the feed-in tariff (FiT), on the long-term development of solar photovoltaics (PVs). With this aim, the paper introduces a dynamic model based on nonlinear delay differential algebraic equations to simulate the evolution of the PV capacity and its commitment in the power grid. The model assumes the FiT budget, the PV cost and willingness of the public to install PVs as the main drivers for solar PV installations. In particular, the learning-by-doing concept to model the PV cost and consequently the PV deployment is proposed for the first time in this paper. The accuracy of the model is validated against historical data of two of the biggest PV markets in the world driven by FiT, namely, Italy during 2008–2014, and Germany during 2000–2014. A sensitivity analysis based on the Italian PV market is carried out to identify the impact of the parameters of the proposed model. Results indicate that the proposed model is a valuable tool that can help policymakers in the decision-making process, such as the definition of the FiT price and the duration of the incentives.
      21Scopus© Citations 7
  • Publication
    Modal Participation Factors of Algebraic Variables
    (Institute of Electrical and Electronics Engineers, 2020-01) ; ;
    This paper proposes an approach to determine the participation of algebraic variables in power system modes. The approach is based on a new interpretation of the classical participation factors, as well as on the definition of adequate output variables of the system's state-space representation. The paper considers both the linear and generalized eigenvalue problems for the calculation of the participation factors and presents a theorem to cope with eigenvalue multiplicities. An illustrative example on the two-area system, as well as a study on a 1479-bus dynamic model of the all-Irish transmission system are carried out to support the theory and illustrate the features of the proposed approach.
    Scopus© Citations 31  22
  • Publication
    Generalized fractional controller for singular systems of differential equations
    In this article we consider a class of singular linear systems of first order, and introduce a generalized fractional order feedback controller of Caputo type. The closed loop system in question is a singular system of differential equations having both first, and fractional order derivatives. We provide a comprehensive theory for the existence and uniqueness of solutions, as well as for the stability of the system with inclusion of the fractional order controller. An example of a singular system with a fractional order proportional integral controller, as well as an example on a 3-bus power system with inclusion of a fractional order damping controller, is given to illustrate our theory.
    Scopus© Citations 19  28
  • Publication
    Small-Signal Stability Techniques for Power System Modal Analysis, Control, and Numerical Integration
    (University College Dublin. School of Electrical and Electronic Engineering, 2021) ;
    0000-0002-1464-3600
    This thesis proposes novel Small-Signal Stability Analysis (SSSA)-based techniques that contribute to electric power system modal analysis, automatic control, and numerical integration. Modal analysis is a fundamental tool for power system stability analysis and control. The thesis proposes a SSSA approach to determine the Participation Factors (PFs) of algebraic variables in power system dynamic modes. The approach is based on a new interpretation of the classical modal PFs as eigen-sensitivities, as well as on the definition of adequate inputs and outputs of the system's state-space representation. Both linear and generalized eigenvalue problems are considered for the calculation of PFs and a theorem to cope with eigenvalue multiplicities is presented. SSSA is also ubiquitous in the synthesis of controllers for power systems. The thesis explores SSSA techniques for the design of power system controllers. The contributions on this topic are twofold, as follows: (i) Investigate a promising control approach, that is to synthesize automatic regulators for power systems based on the theory of fractional calculus. In particular, using eigenvalue analysis, a comprehensive theory on the stability of power systems with inclusion of Fractional Order Controllers (FOCs) is provided. Moreover, the software implementation of FOCs based on Oustaloup's Recursive Approximation (ORA) method is discussed. A variety of FOC applications are illustrated, namely, automatic generation control of synchronous machines; frequency control of a converter-interfaced energy storage system; and voltage control through a static synchronous compensator. (ii) Propose a novel perspective on the potential impact of time delays on power system stability. In general, measurement and communication of control signals in electric energy networks introduces significant time delays that are known to be a threat for the dynamic performance of power systems. However, research in control theory has shown that, by nature, delays are neutral and, if properly introduced, can also stabilize a dynamical system. Through SSSA, the thesis systematically identifies the control parameter settings for which delays in Power System Stabilizers (PSSs) improve the damping of a power system. Both analytical and simulation-based results are presented. Finally, SSSA is utilized in the thesis to systematically propose a delay-based method to reduce the coupling of the equations of power system models for transient stability analysis. The method consists in identifying the variables that, when subjected to a delay equal to the time step of the numerical integration, leave practically unchanged the system trajectories. Automatic selection of the variables and estimation of the maximum admissible delay are carried out by SSSA-based techniques. Such an one-step-delay approximation increases the sparsity of the system Jacobian matrices and can be used in conjunction with state-of-the-art techniques for the integration of Differential-Algebraic Equations (DAEs). The proposed approach is evaluated in terms of accuracy, convergence and computational burden. Throughout the thesis, the proposed techniques are duly validated through numerical tests based on real-world network models.
      318
  • Publication
    Comparison of Numerical Methods and Open-Source Libraries for Eigenvalue Analysis of Large-Scale Power Systems
    This paper discusses the numerical solution of the generalized non-Hermitian eigenvalue problem. It provides a comprehensive comparison of existing algorithms, as well as of available free and open-source software tools, which are suitable for the solution of the eigenvalue problems that arise in the stability analysis of electric power systems. The paper focuses, in particular, on methods and software libraries that are able to handle the large-scale, non-symmetric matrices that arise in power system eigenvalue problems. These kinds of eigenvalue problems are particularly difficult for most numerical methods to handle. Thus, a review and fair comparison of existing algorithms and software tools is a valuable contribution for researchers and practitioners that are interested in power system dynamic analysis. The scalability and performance of the algorithms and libraries are duly discussed through case studies based on real-world electrical power networks. These are a model of the All-Island Irish Transmission System with 8640 variables; and, a model of the European Network of Transmission System Operators for Electricity, with 146,164 variables.
    Scopus© Citations 7  29
  • Publication
    Applications of the Frenet Frame to Electric Circuits
    (Institute of Electrical and Electronics Engineers, 2022-04) ; ; ;
    The paper discusses the relationships between electrical quantities, such as voltages, currents, and frequency, and geometrical ones, namely curvature and torsion. The proposed approach is based on the Frenet frame utilized in differential geometry and provides a general framework for the definition of the time derivative of electrical quantities in stationary as well as transient conditions. As a byproduct, the proposed approach unifies and generalizes the time- and phasor-domain frameworks. Other noteworthy results are a new interpretation of the link between frequency and the time derivatives of voltage and current; and a definition of the rate of change of frequency that includes the novel concept of 'torsional frequency.' Several numerical examples based on balanced, unbalanced, harmonically-distorted and transient voltages illustrate the findings of the paper.
    Scopus© Citations 14  15