Now showing 1 - 10 of 18
  • Publication
    From amines to diketopiperazines: a one-pot approach
    An efficient one-pot synthesis is described for the preparation of 1,4-disubstituted piperazine-2,5-diones starting from a suitable amine and chloroacetyl chloride in the presence of an aqueous base. The resulting chloroacetamide is cyclised in situ by employing the phase-transfer (PT) catalyst, benzyltriethylammonium chloride (TEBA). The products are isolated in excellent yields of up to 90%.
      472Scopus© Citations 5
  • Publication
    A stereoselective synthesis of α-deuterium labelled (S)-α-amino acids
    An atom-efficient and stereoselective synthesis has been developed for the preparation of a-2H-labelled(S)-a-amino acids, starting from a novel chiral diketopiperazine scaffold. Efficient mono-alkylation of the chiral template afforded the (S)-substituted adducts with the nature of the electrophile significantly effecting the stereochemical outcome. Subsequent alkylation was totally selective producing the 1,4-cis adduct as the sole diastereoisomer. The deprotection was carried out using cerium ammonium nitrate followed by acid hydrolysis affording the enantipure a-amino acids.
      417Scopus© Citations 3
  • Publication
    Covalent immobilization of alcohol dehydrogenase (ADH2) from Haloferax volcanii: how to maximize activity and optimize performance of halophilic enzymes
    Alcohol dehydrogenase from halophilic archaeon Haloferax volcanii (HvADH2) was successfully covalently immobilized on metal-derivatized epoxy Sepabeads. The immobilization conditions were optimized by investigating several parameters that affect the halophilic enzyme-support interaction. The highest immobilization efficiency (100%) and retention activity (60%) were achieved after 48 h of incubation of the enzyme with Ni-epoxy Sepaeads support in 100 mM Tris-HCl buffer, pH 8, containing 3 M KCl at 5 ◦C. No significant stabilization was observed after blocking the unreacted epoxy groups with commonly used hydrophilic agents. A significant increase in the stability of the immobilized enzyme was achieved by blocking the unreacted epoxy groups with ethylamine. The immobilization process increased the enzyme stability, thermal activity and organic solvents tolerance when compared to its soluble counterpart, indicating that the immobilization enhances the structural and conformational stability. One step purification–immobilization of this enzyme has been carried out on metal chelate-epoxy Sepabeads, as an efficient method to obtain immobilized biocatalyst directly from bacterial extracts.
    Scopus© Citations 27  352
  • Publication
    Characterization of a novel amine transaminase from Halomonas elongata
    Chiral amines are indispensable building blocks in the production of biologically active compounds. They are fundamental for the pharmaceutical industry, both as active molecules themselves and as chiral auxiliaries in asymmetric synthesis; however, the available synthetic strategies often present disadvantages. ω-Transaminases (ω-TAs) appear as an attractive alternative by driving the stereoselective amination of prochiral ketones. HEWT is a novel amine transaminase from the moderate halophilic bacterium, Halomonas elongata DSM 2581, which is highly (S)-selective, being able to fully convert (S)-1-phenylethylamine to acetophenone and showing no activity with the corresponding (R)-1-phenylethylamine. HEWT has a broad substrate scope, active with a range of amino donors and acceptors, and naturally accepts isopropylamine (IPA) as amino donor in asymmetric synthesis providing a 41% conversion of pyruvate in 24 h at 37 °C starting with 1:1 molar ratio between the reagents. HEWT also accepts ortho-xylylenediamine as amino donor in for amine synthesis, in particular, with benzaldehyde yielding high conversions between 90 and 95%. The enzyme is also tolerant to the presence of cosolvents up to 20% making it a promising candidate for industrial applications.
      420Scopus© Citations 73
  • Publication
    Alternative mild route to the synthesis of 4-methylenecyclohex-2-enone, a key moiety of the anticancer compounds ottelione A and B
    Rare 4-methylenecyclohex-2-enone is prepared from a Diels-Alder methanesulfonate adduct and sodium iodide in acetone in up to 70% yield under mild conditions. This procedure is envisaged to be relevant to the synthesis of 4-methylenecyclo hex-2-enone analogues, structurally similar to the key functionality of cytotoxic otteliones and with potentially significant bioactivity.
      545Scopus© Citations 3
  • Publication
    Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea
    Haloarchaeal alcohol dehydrogenases are of increasing interest as biocatalysts in the field of white biotechnology. In this study, the gene adh12 from the extreme halophile Haloarcula marismortui (HmADH12), encoding a 384 residue protein, was cloned into two vectors: pRV1 and pTA963. The resulting constructs were used to transform host strains Haloferax volcanii (DS70) and (H1209), respectively. Overexpressed His-tagged recombinant HmADH12 was purified by immobilized metal-affinity chromatography (IMAC). The His-tagged protein was visualized by SDS-PAGE, with a subunit molecular mass of 41.6 kDa, and its identity was confirmed by mass spectrometry. Purified HmADH12 catalyzed the interconversion between alcohols and aldehydes and ketones, being optimally active in the presence of 2 M KCl. It was thermoactive, with maximum activity registered at 60°C. The NADP(H) dependent enzyme was haloalkaliphilic for the oxidative reaction with optimum activity at pH 10.0. It favored a slightly acidic pH of 6.0 for catalysis of the reductive reaction. HmADH12 was significantly more tolerant than mesophilic ADHs to selected organic solvents, making it a much more suitable biocatalyst for industrial application.
    Scopus© Citations 26  901
  • Publication
    A simple and efficient method for the synthesis of Erlenmeyer azlactones
    We have recently developed a novel and efficient method for synthesising Erlenmeyer azlactones under mild and rapid conditions. The reaction is performed by reacting 2-phenyl-5-oxazolone with an aldehyde in dichloromethane using alumina as a catalyst. The materials react instantly at room temperature, negating the need for high temperatures and long reaction times. We have successfully used this method for both aliphatic, aromatic and heteroaromatic aldehydes, synthesising previously unmade Erlenmeyer azlactones in moderate to high yields.
    Scopus© Citations 66  2868
  • Publication
    Heterologous overexpression, purification and characterisation of an alcohol dehydrogenase (ADH2) from Halobacterium sp. NRC-1
    Replacement of chemical steps with biocatalytic ones is becoming increasingly more interesting due to the remarkable catalytic properties of enzymes, such as their wide range of substrate specificities and variety of chemo-, stereo- and regioselective reactions. This study presents characterization of an alcohol dehydrogenase (ADH) from the halophilic archaeum Halobacterium sp. NRC-1 (HsADH2). A hexahistidine-tagged recombinant version of HsADH2 (His-HsADH2) was heterologously overexpressed in Haloferax volcanii. The enzyme was purified in one step by immobilised Ni-affinity chromatography (IMAC). His-HsADH2 was halophilic and mildly thermophilic with optimal activity for ethanol oxidation at 4 M KCl around 60 °C and pH 10.0. The enzyme was extremely stable, retaining 80 % activity after 30 days. His-HsADH2 showed preference for NADP(H) but interestingly retained 60 % activity towards NADH. The enzyme displayed broad substrate specificity, with maximum activity obtained for 1-propanol. The enzyme also accepted secondary alcohols such as 2-butanol and even 1-phenylethanol. In the reductive reaction, working conditions for His-HsADH2 were optimised for acetaldehyde and found to be 4 M KCl and pH 6.0. His-HsADH2 displayed intrinsic organic solvent tolerance, which is highly relevant for biotechnological applications.
    Scopus© Citations 8  426
  • Publication
    Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii
    (Springer, 2013-01-01) ;
    The effect of various organic solvents on the catalytic activity, stability and substrate specificity of alchohol dehydrogenase from Haloferax volcanii (HvADH2) was evaluated. The HvADH2 showed remarkable stability and catalysed the reaction in aqueous–organic medium containing dimethyl sulfoxide (DMSO) and methanol (MeOH). Tetrahydrofuran and acetonitrile were also investigated and adversely affected the stability of the enzyme. High concentration of salt, essential to maintain the enzymatic activity and structural integrity of the halophilic enzyme under standard conditions may be partially replaced by DMSO and MeOH. The presence of organic solvents did not induce gross changes in substrate specificity. DMSO offered a protective effect for the stability of the enzyme at nonoptimal pHs such as 6 and 10. Salt and solvent effects on the HvADH2 conformation and folding were examined through fluorescence spectroscopy. The fluorescence findings were consistent with the activity and stability results and corroborated the denaturing properties of some solvents. The intrinsic tolerance of this enzyme to organic solvent makes it highly attractive to industry.
    Scopus© Citations 36  381
  • Publication
    Horse Liver Alcohol Dehydrogenase: new perspectives for an old enzyme
    (Springer Science+Business Media, 2012-11) ; ;
    The EE subunit of horse liver alcohol dehydrogenase (HLADH-EE) has been subcloned in pRSETb vector to generate a fusion His-tag protein. The migration from a multistep purification protocol for this well-known enzyme to a single-step has been successfully achieved. Several adjustments to the traditional purification procedure for Histag proteins have been made to retain protein activity. A full characterization of the fusion enzyme has been carried out and compared with the native one. The Km for EtOH, NAD and NADH in the His-tag version of HLADH are in line with the ones reported in literature for the native enzyme. A shift in optimal pH activity is also observed. The enzyme retains the same stability and quaternary structure as the wild type and can therefore be easily used instead of the native HLADH for biotechnological applications.
    Scopus© Citations 23  878