Now showing 1 - 6 of 6
  • Publication
    Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates
    Photoreduction on a periodically proton exchanged ferroelectric crystal leads to the formation of periodic metallic nanostructures on the surface. By varying the depth of the proton exchange (PE) from 0.59 to 3.10 µm in congruent lithium niobate crystals, the width of the lateral diffusion region formed by protons diffusing under the mask layer, can be controlled. The resulting deposition occurs in the PE region with the shallowest PE depth, and preferentially in the lateral diffusion region for greater PE depths. PE depth-control provides a route for the fabrication of complex metallic nanostructures with controlled dimensions on chemically patterned ferroelectric templates.
      436Scopus© Citations 9
  • Publication
    Surface enhanced luminescence and Raman scattering from ferroelectrically defined Ag nanopatterned arrays
    Ag nanopatterned arrays prepared using periodically proton exchanged templates have been demonstrated to support surface enhanced luminescence. Fluorescence lifetime imaging reveals that luminescence intensity is greatest on Ag and that the lifetime of the molecular probe is reduced, in line with a surface enhanced luminescence mechanism. Studies establish that the substrate simultaneously supports surface enhanced luminescence and Raman scattering. Spatial dependence along the nanopatterned arrays shows <7% variation in Raman scattering signal intensity, offering high reproducibility for practical applications. Fluorophores emitting near the plasmon absorption maxima are enhanced 4-fold.
      589Scopus© Citations 38
  • Publication
    Photoreduction of SERS-active metallic nanostructures on chemically-patterned ferroelectric crystals
    Photodeposition of metallic nanostructures onto ferroelectric surfaces is typically based on patterning local surface reactivity via electric field poling. Here, we demonstrate metal deposition onto substrates which have been chemically patterned via proton exchange (i.e., without polarization reversal). The chemical patterning provides the ability to tailor the electrostatic fields near the surface of lithium niobate crystals and these engineered fields are used to fabricate metallic nanostructures. The effect of the proton exchange process on the piezoelectric and electrostatic properties of the surface is characterized using voltage modulated atomic force microscopy techniques, which combined with modeling of the electric fields at the surface of the crystal, reveal that the deposition occurs preferentially along the boundary between ferroelectric and proton exchanged regions. The metallic nanostructures have been further functionalized with a target probe molecule, 4-aminothiophenol, from which surface enhanced Raman scattering (SERS) signal is detected, demonstrating the suitability of chemically patterned ferroelectrics as SERS-active templates.
    Scopus© Citations 60  662
  • Publication
    Photoreduction of metal nanostructures on periodically proton exchanged MgO-doped lithium niobate crystals
    Local reactivity on periodically proton exchanged lithium niobate (PPE:LN) surfaces is a promising route for the fabrication of regularly spaced nanostructures. Here, using MgO-doped PPE:LN templates, we investigate the influence of the doping on the nanostructure formation as a function of the proton exchange (PE) depth. The deposition is found to occur preferentially along the boundary between MgO-doped LN and the PE region when the PE depth is at least 1.73 μm, however, for shallower depths, deposition occurs across the entire PE region. The results are found to be consistent with an increased photoconductivity of the MgO-doped LN.
    Scopus© Citations 12  497
  • Publication
    Plasmon Enhanced Raman From Ag Nanopatterns Made Using Periodically Poled Lithium Niobate and Periodically Proton Exchanged Template Methods
    We study Ag nanopattern arrays formed using ferroelectric lithography based on two separate approaches, i.e., periodically poled lithium niobate (PPLN) and periodically proton exchanged (PPE) template methods. We demonstrate that such nanoarrays are plasmon active. Raman spectroscopy was applied to study molecular probe 4-aminothiophenol (4-ABT) absorbed onto a silver nanostructured array. The observed Raman spectra show peaks arising from b2 modes, which occur for plasmon enhanced Raman from 4-ABT in place of a1 modes, which occur in normal Raman scattering. We demonstrate that the PPLN and PPE substrates possess different plasmonic properties with PPE creating a stronger SERS signal relative to PPLN substrates.
    Scopus© Citations 50  736
  • Publication
    Growth mechanism of photoreduced silver nanostructures on periodically proton exchanged lithium niobate: Time and concentration dependence
    Photodeposition of metallic nanostructures onto ferroelectric surfaces, which have been chemically patterned using a proton exchange process, has recently been demonstrated. By varying the molar concentration of the AgNO3 solution and the illumination time, one can determine the initial nucleation sites, control the rate of nucleation and the height of silver nanostructures formed, and study the mechanisms by which these processes occurs. The nanoparticles are found to deposit preferentially in the boundary between ferroelectric and proton exchanged regions, in an area proton exchanged via lateral diffusion under the masking layer used for chemical patterning, consistent with our previous results. Using a short illumination time (3 min), we are able to determine that the initial nucleation of the silver nanostructure, having a width of 0.17±0.02µm and a height of 1.61±0.98nm, occurs near the edge of the reactive ion etched area within this lateral diffusion region. Over longer illumination times (15 min), we find that the silver deposition has spread to a width of 1.29±0.06µm, extending across the entire lateral diffusion region. We report that at a high molar concentration of AgNO3 (10¯² M), the amount of silver deposition for 5 min UV illumination is greater (2.88±0.58nm) compared to that at low (10¯4M) concentrations (0.78±0.35nm), however, this is not the case for longer time periods. With increasing illumination time (15 min), experiments at 10¯4 M had greater overall deposition, 6.90±1.52nm, compared to 4.50±0.76nm at 10 ¯² M. For longer exposure times (30min) at 10 ¯² M the nanostructure height is 4.72±0.59nm, suggesting a saturation in the nanostructure height. The results are discussed in terms of the electric double layer that forms at the crystal surface. There is an order of magnitude difference between the Debye lengths for 10¯² and 10¯4 M solutions, i.e., 3.04 vs. 30.40nm, which suggests the Debye length plays a role in the availability of Ag+ ions at the surface.
    Scopus© Citations 13  469