Now showing 1 - 2 of 2
  • Publication
    Concussion recovery evaluation using the inertial sensor instrumented Y Balance Test
    The current sports concussion assessment paradigm lacks reliability, has learning effects and is not sufficiently challenging for athletes. As a result, subtle deficits in sensorimotor function may be unidentified, increasing the risk of future injury. This study examined if the inertial-sensor instrumented Y Balance test could capture concussion induced alterations in dynamic movement control. A cohort of 226 elite Rugby Union, American Football and Ice Hockey athletes were evaluated using the inertial-sensor instrumented Y balance test. Dynamic balance performance was quantified using normalised reach distance, jerk magnitude root-Mean-Squared (Jerk Mag RMS) and gyroscope magnitude sample entropy (Gyro Mag SEn). Concussed athletes who consented to follow-up were evaluated 24 to 48-hours post-injury, and at the point of return to full contact training (RTP). Seventeen athletes sustained a concussion and consented to both the 24 to 48-hour and RTP follow-up testing. Twenty uninjured control athletes were re-tested 6-months following initial screening. Concussed athletes had reductions in normalised reach distance (Cohens D=0.66-1.16) and Jerk Mag (Cohens D=0.57-1.14) 24 to 48-hours post-injury, which returned to pre-injury levels by the point of RTP. There was no significant difference in performance between the baseline and 6-month follow-up in the 20 un-injured athletes (Cohens D=0.06-0.51). There was a statistically significant linear association between Jerk Mag RMS 24 to 48-hours post-injury and the natural log of RTP duration (R2= 0.27 to 0.33). These results indicate that concussed athletes possessed alterations in dynamic movement control 24 to 48-hours post-concussion, which typically returns to pre-injury levels by the point of RTP. Furthermore, evaluation of dynamic movement control 24 to 48 hours post injury may aid in the evaluation of recovery prognosis.
    Scopus© Citations 11  598
  • Publication
    Athletes with a concussion history in the last two years have impairments in dynamic balance performance
    The purpose of this study was to determine if National Collegiate Athletics Association Division 1 American Football and Ice Hockey athletes with a history of concussion have impaired dynamic balance control when compared to healthy control athletes. This cross‐sectional observational study recruited 146 athletes; 90 control athletes and 56 athletes with a history of concussion. Athletes were tested during a pre‐season evaluation using the inertial‐sensor instrumented Y Balance Test. Independent variables were normalized reach distance, gyroscope magnitude sample entropy, and jerk magnitude root mean square. Kruskal‐Wallis H test and Dunn‐Bonferroni analysis demonstrated that individuals with a concussion history within the last 2 years have statistically significantly lower jerk magnitude root mean square in the posteromedial (Z = 23.22, P = .015) and posterolateral (Z = 24.64, P = .010) reach directions, when compared to the control group. There was no significant difference between those who sustained a concussion longer than two years ago and the control group for the posteromedial (Z = −1.25; P = .889) and posterolateral (Z = 6.44; P = .469) directions. These findings show that athletes with a concussion history within the last two years possess dynamic balance deficits, when compared to healthy control athletes. Conversely, athletes whose injury occurred greater than 2 years ago possessed comparable performance to the healthy controls. This suggests that sensorimotor control deficits may persist beyond clinical recovery, for up to 2 years. Therefore, clinicians should integrate balance training interventions into the return‐to‐play process to accelerate sensorimotor recovery and mitigate the risk of future injury.
    Scopus© Citations 9  431