Now showing 1 - 10 of 12
No Thumbnail Available
Publication

Human Lsg1 defines a family of essential GTPases that correlates with the evolution of compartmentalization

2005-10-07, Reynaud, Emmanuel G., Andrade, Miguel A., Bonneau, Fabien, et al.

Background: Compartmentalization is a key feature of eukaryotic cells, but its evolution remains poorly understood. GTPases are the oldest enzymes that use nucleotides as substrates and they participate in a wide range of cellular processes. Therefore, they are ideal tools for comparative genomic studies aimed at understanding how aspects of biological complexity such as cellular compartmentalization evolved. Results: We describe the identification and characterization of a unique family of circularly permuted GTPases represented by the human orthologue of yeast Lsg1p. We placed the members of this family in the phylogenetic context of the YlqF Related GTPase (YRG) family, which are present in Eukarya, Bacteria and Archea and include the stem cell regulator Nucleostemin. To extend the computational analysis, we showed that hLsg1 is an essential GTPase predominantly located in the endoplasmic reticulum and, in some cells, in Cajal bodies in the nucleus. Comparison of localization and siRNA datasets suggests that all members of the family are essential GTPases that have increased in number as the compartmentalization of the eukaryotic cell and the ribosome biogenesis pathway have evolved. Conclusions: We propose a scenario, consistent with our data, for the evolution of this family: cytoplasmic components were first acquired, followed by nuclear components, and finally the mitochondrial and chloroplast elements were derived from different bacterial species, in parallel with the formation of the nucleolus and the specialization of nuclear components.

No Thumbnail Available
Publication

Liquid-phase 3D bioprinting of gelatin alginate hydrogels: influence of printing parameters on hydrogel line width and layer height

2019-07-16, Alruwaili, Maha, Lopez, Jose A., McCarthy, Kevin, Reynaud, Emmanuel G., Rodriguez, Brian J.

Extrusion-based 3D bioprinting is a direct deposition approach used to create three-dimensional (3D) tissue scaffolds typically comprising hydrogels. Hydrogels are hydrated polymer networks that are chemically or physically cross-linked. Often, 3D bioprinting is performed in air, despite the hydrated nature of hydrogels and the potential advantage of using a liquid phase to provide cross-linking and otherwise functionalize the hydrogel. In this work, we print gelatin alginate hydrogels directly into a cross-linking solution of calcium chloride and investigate the influence of nozzle diameter, distance between nozzle and surface, calcium chloride concentration, and extrusion rate on the dimensions of the printed hydrogel. The hydrogel layer height was generally found to increase with increasing extrusion rate and nozzle distance, according to the increased volume extruded and the available space, respectively. In addition, the hydrogel width was generally found to increase with decreasing nozzle distance and cross-linking concentration corresponding to confinement-induced spreading and low cross-linking regimes, respectively. Width/height ratios of ~ 1 were generally achieved when the nozzle diameter and distance were comparable above a certain cross-linking concentration. Using these relationships, biocompatible 3D multilayer structures were successfully printed directly into calcium chloride cross-linking solution.

No Thumbnail Available
Publication

Spatiotemporally Resolved Heat Dissipation in 3D Patterned Magnetically Responsive Hydrogels

2021-02-04, Monks, Patricia, Wychowaniec, Jacek K., McKiernan, Eoin, Clerkin, Shane, Crean, John, Rodriguez, Brian J., Reynaud, Emmanuel G., Heise, Andreas, Brougham, Dermot F.

Multifunctional nanocomposites that exhibit well-defined physical properties and encode spatiotemporally controlled responses are emerging as components for advanced responsive systems, for example, in soft robotics or drug delivery. Here an example of such a system, based on simple magnetic hydrogels composed of iron oxide magnetic nanoflowers and Pluronic F127 that generates heat upon alternating magnetic field irradiation is described. Rules for heat-induction in bulk hydrogels and the heat-dependence on particle concentration, gel volume, and gel exposed surface area are established, and the dependence on external environmental conditions in “closed” as compared to “open” (cell culture) system, with controllable heat jumps, of ∆T 0–12°C, achieved within ≤10 min and maintained described. Furthermore the use of extrusion-based 3D printing for manipulating the spatial distribution of heat in well-defined printed features with spatial resolution <150 µm, sufficiently fine to be of relevance to tissue engineering, is presented. Finally, localized heat induction in printed magnetic hydrogels is demonstrated through spatiotemporally-controlled release of molecules (in this case the dye methylene blue). The study establishes hitherto unobserved control over combined spatial and temporal induction of heat, the applications of which in developing responsive scaffold remodeling and cargo release for applications in regenerative medicine are discussed.

No Thumbnail Available
Publication

3D-Printed Peptide-Hydrogel Nanoparticle Composites for Surface-Enhanced Raman Spectroscopy Sensing

2019-07-26, Almohammed, Sawsan, Alruwaili, Maha, Reynaud, Emmanuel G., Redmond, Gareth, Rice, James H., Rodriguez, Brian J.

Precise control over the arrangement of plasmonic nanomaterials is critical for label-free single-molecule surface-enhanced Raman spectroscopy (SERS)-based sensing applications. SERS templates should provide high sensitivity and reproducibility and be cost-effective and easy to prepare. Additive manufacturing by extrusion-based three-dimensional (3D) printing is an emerging technique for the spatial arrangement of nanomaterials and is a method that may satisfy these SERS template requirements. In this work, we use 3D printing to produce sensitive and reproducible SERS templates using a fluorenylmethyloxycarbonyl diphenylalanine (Fmoc-FF) hydrogel loaded with silver or gold nanoparticles. The Fmoc-FF template allows the detection of low Raman cross-section molecules such as adenine at concentrations as low as 100 pM.

No Thumbnail Available
Publication

Transitional forms between the three domains of life and evolutionary implications

2011-09-14, Reynaud, Emmanuel G., Devos, Damien P.

The question as to the origin and relationship between the three domains of life is lodged in a phylogenetic impasse. The dominant paradigm is to see the three domains as separated. However, the recently characterized bacterial species have suggested continuity between the three domains. Here, we review the evidence in support of this hypothesis and evaluate the implications for and against the models of the origin of the three domains of life. The existence of intermediate steps between the three domains discards the need for fusion to explain eukaryogenesis and suggests that the last universal common ancestor was complex. We propose a scenario in which the ancestor of the current bacterial Planctomycetes, Verrucomicrobiae and Chlamydiae superphylum was related to the last archaeal and eukaryotic common ancestor, thus providing a way out of the phylogenetic impasse.

No Thumbnail Available
Publication

A Holistic Approach to Marine Eco-Systems Biology

2011-10-18, Karsenti, Eric, Acinas, Silvia G., Bork, Peer, Reynaud, Emmanuel G., et al.

The structure, robustness, and dynamics of ocean plankton ecosystems remain poorly understood due to sampling, analysis, and computational limitations. The Tara Oceans consortium organizes expeditions to help fill this gap at the global level.

No Thumbnail Available
Publication

Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans

2018-01-22, Seeleuthner, Yoann, Mondy, Samuel, Lombard, Vincent, Reynaud, Emmanuel G., et al.

Single-celled eukaryotes (protists) are critical players in global biogeochemical cycling of nutrients and energy in the oceans. While their roles as primary producers and grazers are well appreciated, other aspects of their life histories remain obscure due to challenges in culturing and sequencing their natural diversity. Here, we exploit single-cell genomics and metagenomics data from the circumglobal Tara Oceans expedition to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles. Based on the available data, each sequenced genome or genotype appears to have a specific oceanic distribution, principally correlated with water temperature and depth. The genome content provides hypotheses for specialization in terms of cell motility, food spectra, and trophic stages, including the potential impact on their lifestyles of horizontal gene transfer from prokaryotes. Our results support the idea that prominent heterotrophic marine protists perform diverse functions in ocean ecology.

No Thumbnail Available
Publication

Taxonomic colouring of phylogenetic trees of protein sequences

2006-02-17, Palidwor, Gareth, Reynaud, Emmanuel G., Andrade, Miguel A.

Background: Phylogenetic analyses of protein families are used to define the evolutionary relationships between homologous proteins. The interpretation of protein-sequence phylogenetic trees requires the examination of the taxonomic properties of the species associated to those sequences. However, there is no online tool to facilitate this interpretation, for example, by automatically attaching taxonomic information to the nodes of a tree, or by interactively colouring the branches of a tree according to any combination of taxonomic divisions. This is especially problematic if the tree contains on the order of hundreds of sequences, which, given the accelerated increase in the size of the protein sequence databases, is a situation that is becoming common. Results: We have developed PhyloView, a web based tool for colouring phylogenetic trees upon arbitrary taxonomic properties of the species represented in a protein sequence phylogenetic tree. Provided that the tree contains SwissProt, SpTrembl, or GenBank protein identifiers, the tool retrieves the taxonomic information from the corresponding database. A colour picker displays a summary of the findings and allows the user to associate colours to the leaves of the tree according to any number of taxonomic partitions. Then, the colours are propagated to the branches of the tree. Conclusion: PhyloView can be used at http:/www.og ic.ca/projects/ phyloview/. A tutorial, the software with documentation, and GPL licensed source code, can be accessed at the same web address. © 2006 Palidwor et al; licensee BioMed Central Ltd.

No Thumbnail Available
Publication

Reading the Evolution of Compartmentalization in the Ribosome Assembly Toolbox: The YRG Protein Family

2017-01-10, Mier, Pablo, Pérez-Pulido, Antonio J., Reynaud, Emmanuel G., Andrade, Miguel A.

Reconstructing the transition from a single compartment bacterium to a highly compartmentalized eukaryotic cell is one of the most studied problems of evolutionary cell biology. However, timing and details of the establishment of compartmentalization are unclear and difficult to assess. Here, we propose the use of molecular markers specific to cellular compartments to set up a framework to advance the understanding of this complex intracellular process. Specifically, we use a protein family related to ribosome biogenesis, YRG (YlqF related GTPases), whose evolution is linked to the establishment of cellular compartments, leveraging the current genomic data. We analyzed orthologous proteins of the YRG family in a set of 171 proteomes for a total of 370 proteins. We identified ten YRG protein subfamilies that can be associated to six subcellular compartments (nuclear bodies, nucleolus, nucleus, cytosol, mitochondria, and chloroplast), and which were found in archaeal, bacterial and eukaryotic proteomes. Our analysis reveals organism streamlining related events in specific taxonomic groups such as Fungi. We conclude that the YRG family could be used as a compartmentalization marker, which could help to trace the evolutionary path relating cellular compartments with ribosome biogenesis.

No Thumbnail Available
Publication

Long-term survey of a syringe-dispensing machine needle exchange program: Answering public concerns

2014-05-22, Duplessy, Catherine, Reynaud, Emmanuel G.

Background: Syringe-dispensing machines (SDM) provide syringes at any time even to hard-to-reach injecting drug users (IDUs). They represent an important harm reduction strategy in large populated urban areas such as Paris. We analyzed the performance of one of the world's largest SDM schemes based in Paris over 12 years to understand its efficiency and its limitations, to answer public and stakeholder concerns and optimize its outputs. Methods: Parisian syringe dispensing and exchange machines were monitored as well as their sharp disposals and associated bins over a 12-year period. Moreover, mechanical counting devices were installed on specific syringe-dispensing/exchange machines to record the characteristics of the exchange process. Results: Distribution and needle exchange have risen steadily by 202% for the distribution and 2,000% for syringe recovery even without a coin counterpart. However, 2 machines out of 34 generate 50% of the total activity of the scheme. It takes 14 s for an IDU to collect a syringe, while the average user takes 3.76 syringes per session 20 min apart. Interestingly, collection time stops early in the evening (19 h) for the entire night. Conclusions: SDMs had an increasing distribution role during daytime as part of the harm reduction strategy in Paris with efficient recycling capacities of used syringes and a limited number of kits collected by IDU. Using counting devices to monitor Syringe Exchange Programs (SEPs) is a very helpful tool to optimize use and answer public and stakeholder concerns.