Now showing 1 - 2 of 2
  • Publication
    Evaluation of the influence of low pressure additive manufacturing processing conditions on printed polymer parts
    The properties of 3-D printed polymeric parts depend significantly on the processing conditions under which they are fabricated. This study aims to determine how the use of low-pressure additive manufacturing (AM) processing conditions, influences the mechanical performance of printed polymeric parts. This polymer material extrusion (PME) study was carried out using an open-source desktop printer, under both low pressure (1 Pa) and at atmospheric pressure. The printing study was carried out using acrylonitrile butadiene styrene (ABS), polylactic acid (PLA) and a nylon co-polymer (PA6). The resultant polymer parts were compared based on their printed mass, density, volume, porosity, surface energy, ATR-IR analysis and thermal properties (DSC). As expected only minor differences in chemical functionality were observed between parts printed under the two processing pressures. Under low-pressure printing conditions, the polymer parts exhibited some physical changes, when compared to those, printed under atmospheric conditions, such as an increase in density and a decrease in porosity. This was observed in particular with the low-pressure printing of PA6 parts, which exhibited an increase in density from 1.095 to 1.113 g/cm3 and a decrease in porosity by 8%. Comparing low-pressure printed type V dog bones (ASTM D-638), with those printed at atmospheric pressure, it was observed that the ABS, PLA and PA6 exhibited an increase in Ultimate Tensile Strength of 9%, 13% and 42% respectively. It is proposed that the superior mechanical properties obtained for polymers printed under low pressure conditions, may be due to a combination of two factors. These are the reduction in porosity of the printed part and the reduction in heat loss at the printed polymer surface, yielding enhanced bonding between the polymer layers. In a further printing study carried out at atmospheric pressure in a nitrogen atmosphere, it was also demonstrated that any oxidation of the polymer layers during printing, did not significantly influence the mechanical properties of the resultant printed parts.
      347Scopus© Citations 24
  • Publication
    Low‐pressure additive manufacturing of continuous fiber‐reinforced polymer composites
    Continuous fibre reinforced polymer composites have found a wide range of applications in the automotive and aerospace industry, due to their lightweight properties. Recently the use of additive manufacturing (AM) has been developed for the fabrication of these composites. This study investigates the use of both atmospheric and for the first time, low-pressure (1 Pa) processing conditions, for the AM of continuous carbon, glass and Kevlar fibre reinforced nylon composites. DSC was used to compare the thermal properties of the three types of fibre reinforced filament, prior to printing. It was found that the melting peak was dependent on filament type, which can be related to the polymer processing conditions used during their fabrication. Based on computed tomography measurements, it was found that the use of low-pressure printing conditions yielded a reduction in porosity for the carbon, glass and Kevlar printed composites of 5.7, 1.0 and 1.7 % respectively. The mechanical properties of the composites were compared, using a short beam shear test, which assisted in the measurement of interlaminar properties. An increase in interlaminar shear strength of 33, 22 and 12% was obtained for the carbon, glass and Kevlar fibre reinforced polymer composites respectively, when printed under low-pressure, compared with that obtained at atmospheric pressure.
      574Scopus© Citations 59