Now showing 1 - 10 of 25
  • Publication
    Impact of a moving trolley on the dynamic response of a ship unloader boom
    (University of Western Australia, 2018-02-02) ; ;
    Container cranes represent an important link in the maritime transport system. Assessment of residual life for such cranes is important both in terms of safety and cost of repair and maintenance. These cranes usually have a hoisting trolley system which can move along the boom for lifting, carrying and lowering the payload, loading/unloading vessels in the harbour. This paper investigates the dynamic response of the lifting boom using a non-linear finite element analysis. A number of such moving trolley systems, with different degrees of complexity, are modelled to assess the impact of their influence on the boom dynamic response parameters. Results from the finite element analysis are compared to a pseudo-static analysis and are presented in terms of a Dynamic Response Factor (DRF).
      306
  • Publication
    Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning
    (World Academy of Science, Engineering and Technology, 2016-11-08) ; ;
    Over the past decades, crack propagation has been extensively studied by researchers around the word. The approach based on crack propagation models have been widely used in inspection planning. This approach has the advantage that it gives measurable fatigue damage accumulation in terms of crack propagation with time and thus crack propagation models can be updated with inspection results. However, a prerequisite for using crack propagation models in inspection planning is that parameters such as initial crack size, crack growth rate, geometry function, etc. are known.  Among those parameters, initial crack size, depending on welding quality, material and the environment, is associated with the most uncertainties because of sampling and measuring problems. Another prerequisite for using crack propagation models in inspection planning is that crack initiation period can be assumed to be negligible. Both prerequisites are challenged nowadays as manufacturing and welding techniques have been improved. Some high-quality welded joins have been proven free from detectable size of flaws and the crack initiation period can account for a large part of the whole fatigue life. This gives rise to big difficulty for inspection planning of high-quality welded joins, as there is no generally acceptable approach for modelling the whole fatigue process that includes crack initiation period. Compared to as-welded joints, reliable inspection planning is more crucial for high-quality welded joins, as they are generally designed to withstand a larger stress range. In addition, they may have shorter time for inspection as crack initiation time account for a large part of fatigue life, with a shorter crack propagation period to failure due to higher stress range. To address this problem for high-quality welded joints, a robust model accounting for the whole fatigue process needs to be developed. The core issue is how the crack initiation period can be modelled and added to the crack propagation time. To help identify this issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data, e.g. Weibull distribution or lognormal distribution; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modelled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; 4) Modelling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. Conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.
      558
  • Publication
    Reduction of uncertainties associated to the dynamic response of a ship unloader
    Here, the TRUSS (Training in Reducing Uncertainty in Structural Safety) ITN (Innovative Training Network) Horizon 2020 project (http://trussitn.eu, 2015-19) demonstrates how the accuracy of residual life assessment predictions can be improved by achieving a good agreement between measured and predicted dynamic responses of a crane structure. Existing records of measured strain data are often missing information such as the weight of the payload, the hoisting speed and acceleration that are relevant for structural assessment purposes. This paper aims to reduce uncertainties associated with the recorded data in an aged grab ship unloader by comparing measured and non-linear transient finite element analyses results for a loading/unloading cycle. The speed pattern is determined from a best match to the measured record. The moving load consisting of ‘trolley + grab + payload’ is modelled with parameters that are derived from minimizing differences between measured and simulated responses. The determination of these loading parameters is central to accurately assess the remaining life of ship unloaders.
      316
  • Publication
    Probabilistic decision basis and objectives for inspection planning and optimization
    (Taylor & Francis, 2018-10-31) ; ;
    Marine and offshore engineering has long been challenged with the problem of structural integrity management (SIM) for assets such as ships and offshore platforms due to the harsh marine environments, where cyclic loading and corrosion are persistent threats to structural integrity. SIM for such assets is further complicated by the very large number of welded plates and joints, for which condition surveys by inspections and structural health monitoring become a difficult and expensive task. Structural integrity of such assets is also influenced by uncertainties associated with materials, loading characteristics, fatigue degradation model and inspection method, which have to be accounted for. Therefore, managing these uncertainties and optimizing the inspection and repair activities are relevant to improvements in SIM. This paper addresses probabilistic inspection planning and optimization by comparative analysis for a typical fatigue-prone structural detail based on reliability, life cycle cost (LCC) and value of inspection information (VoI). With the objective of clarifying the differences between the theoretical basis and objectives for probabilistic inspection optimization, three maintenance strategies for the structural detail are proposed and studied. It is found that different optimal inspection times are obtained with the objectives of reliability maximization, LCC minimization and VoI maximization. Also, planned inspection and repair can help to achieve higher reliability with fewer repairs than repair without inspection (i.e. time-based replacement). If the cost of unit inspection and repair is not negligible compared with failure consequence, it is suggested to employ the optimization objective of life cycle cost minimization, which considers the costs of SIM. The paper proposes a simple approach for quantifying the VoI, based on life cycle cost analysis for the three maintenance strategies. It is concluded that the VoI is relevant to both the optimal maintenance decision with and without inspection.
      145
  • Publication
    Uncertainty quantification and calibration of a modified fracture mechanics model for reliability-based inspection planning
    Efficient inspection and maintenance are important means to enhance fatigue reliability of engineering structures, but they can only be achieved efficiently with the aid of accurate pre-diction of fatigue crack initiation and growth until fracture. The influence of crack initiation on fatigue life has received a significant amount of attention in the literature, although its im-pact on the inspection plan is not generally addressed. Current practice in the prediction of fatigue life is the use of S-N models at the design stage and Fracture Mechanics (FM) models in service. On the one hand, S-N models are relatively easy to apply given that they directly relate fatigue stress amplitude to number of cycles of failure, however, they are difficult to extrapolate outside the test conditions employed to define the S-N curves. On the other hand, FM models like the Paris propagation law give measurable fatigue damage accumulation in terms of crack growth and have some ability to extrapolate results outside the test conditions, but they can only be a total fatigue life model if the initial crack size was known given that they do not address the crack initiation period. Furthermore, FM models generally introduce large uncertainties in parameters that are often difficult to measure such as initial crack size, crack growth rate, threshold value for stress intensity factor range, etc. This paper proposes a modified FM model that predicts the time to failure allowing for crack initiation period. The main novelty of the modified FM model is the calibration using S-N data (i.e., inclusive of crack initiation period) for an established criterion in fatigue life and reliability level. Sources of uncertainty associated to the model are quantified in probabilistic terms. The modified FM model can then be applied to reliability-based inspection planning. An illustrative example is performed on a typical detail of ship structure, where the optimum inspection plan derived from the proposed model is compared to recommendations by existing FM models. Results demonstrate to what extent is the optimum inspection plan influenced by the crack initiation period. The modified model is shown to be a reliable tool for both fatigue design and fatigue management of inspection and maintenance intervals. 
      374
  • Publication
    Sources of structural failure in ship unloaders
    This paper reviews the most common causes of failure in ship unloaders. The structural forms employed in the design of ship unloaders and the characteristics of the loads acting on these structures are introduced first. Then, typical failures including overloading, joint failure, cable breaking, corrosion and fatigue failure amongst others, are described. Fatigue failure is discussed in further detail. When assessing a ship unloader for fatigue, it is necessary to define the fatigue demand and the fatigue strength capacity of those structural details under investigation. The latter experiences stress cycles that accumulate over time until reaching a limit that leads to cracking. Loads and stresses need to be monitored to describe those cycles, and critical locations must be checked to prevent a catastrophic failure.
      1342
  • Publication
    A probabilistic approach for joint optimization of fatigue design, inspection and maintenance
    (International Society of Offshore and Polar Engineers, 2018-06-10) ; ; ;
    This paper addresses challenges in fatigue management of marine structural assets with a holistically approach, by jointly considering fatigue design, inspection and maintenance decisions, whilst taking into account sources of uncertainties affecting life cycle performance. A risk-informed and holistic approach is proposed for jointly optimizing fatigue design, inspection and maintenance based on the same fatigue deterioration model. The optimization parameters are fatigue design factor (FDF) and inspection intervals, while the objective is to minimize expected life cycle costs (LCC). The framework is to guide design process as well as to formulate optimal maintenance strategies. The proposed approach is exemplified for the marine industry through a fatigue-prone detail in a ship structure to obtain the life cycle optimal management solution that achieves a best compromise between structural safety and life cycle costs.
      196
  • Publication
    Value of inspection in fatigue management of steel structures
    Fatigue cracking is a common problem that needs to be managed in the life cycles of steel structures. Operational inspections and repairs are important means of fatigue crack management. Driven by high relevance in safety control and budget saving, inspection and maintenance planning has been widely studied. However, the value of inspection and repairs has typically not been fully appreciated and quantified rationally before they are implemented. The basic idea of this paper is to address the planning problem with focus on repair other than on inspection. A maintenance strategy without inspection is studied and serves as comparison of a maintenance strategy with inspection. Then the value of repair and the value of inspection relative to repair can be evaluated respectively. An illustrative example is performed on a typical fatigue-prone detail in steel structures.
      148
  • Publication
    Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning
    (World Academy of Science, Engineering and Technology, 2016-11) ; ;
    Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.
      360
  • Publication
    Probabilistic maintenance optimization with respect to inspection quality
    Maintenance scheduling and optimization against fatigue failures is of great interest for marine and offshore engineering in terms of safety assurance, integrity management and cost control. The main challenge is to make risk-informed and optimal maintenance decisions taking into account uncertainties associated with material properties, fatigue loads, modelling, inspection and maintenance methods. While optimization of inspection times has been the objectives of many studies, the influence and optimization of inspection qualities is not very clear. This paper has applied probabilistic fracture mechanics and reliability/risk methods to optimization of inspection quality as well as inspection time and revealed the effect of inspection quality on lifetime fatigue reliability. It is found that there is a reliability-based optimum inspection quality for maintenance scheduling, which is different from the cost-based optimum one. Better inspection quality than the optimum one can lead to excessive maintenance, which occurs when the effect of maintenance is not good, and the inspection quality applied is very good. Excessive maintenance can lead to increase of both expected failure costs and maintenance costs, and thus should be avoided.
      159