Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Uveal Melanoma Cell Line Proliferation Is Inhibited by Ricolinostat, a Histone Deacetylase Inhibitor

2022-02-03, Sundaramurthi, Husvinee, García-Mulero, Sandra, Tonelotto, Valentina, Slater, Kayleigh, Marcone, Simone, Piulats, J. M., Watson, R. William, Tobin, Desmond John, Jensen, Lasse D., Kennedy, Breandán

Metastatic uveal melanoma (MUM) is characterized by poor patient survival. Unfortunately, current treatment options demonstrate limited benefits. In this study, we evaluate the efficacy of ACY-1215, a histone deacetylase inhibitor (HDACi), to attenuate growth of primary ocular UM cell lines and, in particular, a liver MUM cell line in vitro and in vivo, and elucidate the underlying molecular mechanisms. A significant (p = 0.0001) dose-dependent reduction in surviving clones of the primary ocular UM cells, Mel270, was observed upon treatment with increasing doses of ACY-1215. Treatment of OMM2.5 MUM cells with ACY-1215 resulted in a significant (p = 0.0001), dose-dependent reduction in cell survival and proliferation in vitro, and in vivo attenuation of primary OMM2.5 xenografts in zebrafish larvae. Furthermore, flow cytometry revealed that ACY-1215 significantly arrested the OMM2.5 cell cycle in S phase (p = 0.0001) following 24 h of treatment, and significant apoptosis was triggered in a time-and dose-dependent manner (p < 0.0001). Additionally, ACY-1215 treatment resulted in a significant reduction in OMM2.5 p-ERK expression levels. Through proteome profiling, the attenuation of the microphthalmia-associated transcription factor (MITF) signaling pathway was linked to the observed anti-cancer effects of ACY-1215. In agreement, pharmacological inhibition of MITF signaling with ML329 significantly reduced OMM2.5 cell survival and viability in vitro (p = 0.0001) and reduced OMM2.5 cells in vivo (p = 0.0006). Our findings provide evidence that ACY-1215 and ML329 are efficacious against growth and survival of OMM2.5 MUM cells.

No Thumbnail Available
Publication

Evaluation of oncogenic cysteinyl leukotriene receptor 2 as a therapeutic target for uveal melanoma

2018-09, Slater, Kayleigh, Hoo, Pei Sian, Buckley, A. M., Piulats, J. M., Villanueva, A., Portela, A., Kennedy, Breandán

Uveal melanoma is a rare, but deadly, form of eye cancer that arises from melanocytes within the uveal tract. Although advances have emerged in treatment of the primary tumour, patients are still faced with vision loss, eye enucleation and lethal metastatic spread of the disease. Approximately 50% of uveal melanoma patients develop metastases, which occur most frequently in the liver. Metastatic patients encounter an extremely poor prognosis; as few as 8% survive beyond 2 years. Understanding of the genetic underpinnings of this fatal disease evolved in recent years with the identification of new oncogenic mutations that drive uveal melanoma pathogenesis. Despite this progress, the lack of successful therapies or a proven standard-of-care for uveal melanoma highlights the need for new targeted therapies. This review focuses on the recently identified CYSLTR2 oncogenic mutation in uveal melanoma. Here, we evaluate the current status of uveal melanoma and investigate how to better understand the role of this CYSLTR2 mutation in the disease and implications for patients harbouring this mutation.