Now showing 1 - 3 of 3
  • Publication
    Model to simulate the spread of Mycobacterium avium subsp. paratuberculosis (Map) within and between herds via trade movements between dairy herds
    Model to simulate the spread of Mycobacterium avium subsp. paratuberculosis (Map) within and between herds via trade movements between dairy herds. Control measures can be applied: - trade movements rewiring to foster exchanges between herds of the same status (according to within-herd prevalence) (w option) - hygiene, by decreasing calf exposure to bacterial environment (e option) - early culling of high shedders (k option). Model is mechanistic (infection dynamics) and data-driven (movements and demography), stochastic, discrete-time and individual-based. Requirements: C++ compiler: g++ (tested version: 7.2.0) => sudo apt install g++. Warning: standard library C++11 is required. tclap (version 1.2.1): sudo apt install libtclap-dev.
      93
  • Publication
    Modelling transmission of Mycobacterium avium subspecies paratuberculosis between Irish dairy cattle herds
    Bovine paratuberculosis is an endemic disease caused by Mycobacterium avium subspecies paratuberculosis (Map). Map is mainly transmitted between herds through movement of infected but undetected animals. Our objective was to investigate the effect of observed herd characteristics on Map spread on a national scale in Ireland. Herd characteristics included herd size, number of breeding bulls introduced, number of animals purchased and sold, and number of herds the focal herd purchases from and sells to. We used these characteristics to classify herds in accordance with their probability of becoming infected and of spreading infection to other herds. A stochastic individual-based model was used to represent herd demography and Map infection dynamics of each dairy cattle herd in Ireland. Data on herd size and composition, as well as birth, death, and culling events were used to characterize herd demography. Herds were connected with each other through observed animal trade movements. Data consisted of 13 353 herds, with 4 494 768 dairy female animals, and 72 991 breeding bulls. We showed that the probability of an infected animal being introduced into the herd increases both with an increasing number of animals that enter a herd via trade and number of herds from which animals are sourced. Herds that both buy and sell a lot of animals pose the highest infection risk to other herds and could therefore play an important role in Map spread between herds.
      368
  • Publication
    The effect of risk-based trading and within-herd measures on Mycobacterium avium subspecies paratuberculosis spread within and between Irish dairy herds
    Johne’s disease (bovine paratuberculosis) is an endemic disease caused by Mycobacterium avium subspecies paratuberculosis (Map). Map is transmitted between herds primarily through movement of infected but undetected animals. Within infected herds, possible control strategies include improving herd hygiene by reducing calf exposure to faeces from cows, reducing stress in cows resulting in a longer latently infected period where shedding is minimal, or culling highly test-positive cows soon after detection. Risk-based trading can be a strategy to reduce the risk that Map spreads between herds. Our objective was to assess whether within-herd measures combined with risk-based trading could effectively control Map spread within and between dairy cattle herds in Ireland. We used a stochastic individual-based and between-herd mechanistic epidemiological model to simulate Map transmission. Movement and herd demographic data were available from 1st January 2009–31st December 2018. In total, 13,353 herds, with 4,494,768 dairy female animals, and 72,991 bulls were included in our dataset. The movement dataset consisted of 2,304,149 animal movements. For each herd, a weekly indicator was calculated that reflected the probability that the herd was free from infection. The indicator value increased when a herd tested negative, decreased when animals were introduced into a herd, and became 0 when a herd tested positive. Based on this indicator value, four Johne’s assurance statuses were distinguished: A) ≥ 0.7 – 1.0, B) ≥ 0.3 – < 0.7, C) > 0.0 – < 0.3, and D) 0.0. A is the highest and D the lowest Johne’s assurance status. With risk-based trading some of the observed movements between herds were redirected based on Johne’s assurance status with the aim of reducing the risk that a non-infected herd acquired an infected animal. Risk-based trading effectively reduced the increase in herd prevalence over a 10-year-period in Ireland: from 50% without risk-based trading to 42% with risk-based trading in the metapopulation only, and 26% when external purchases were risk-based as well. However, for risk-based trading to be effective, a high percentage of dairy herds had to participate. The most important within-herd measures were improved herd hygiene and early culling of highly infectious cows. These measures reduced both herd and within-herd prevalence compared to the reference scenario. Combining risk-based trading with within-herd measures reduced within-herd prevalence even more effectively.
      31