Now showing 1 - 4 of 4
  • Publication
    Calibration of a commercial building energy simulation model for demand response analysis
    (International Building Performance Simulation Association (IBPSA), 2015-12-09) ; ; ;
    This paper describes the calibration process of an EnergyPlus simulation model, for a multi-purpose commercial building, which has been developed specifically for demand response analysis. Power, gas and air temperature data are collected in fifteen minute intervals as part of the calibration process. Real occupancy data are implemented as well. The results indicate a mean bias error of -1.6% for the annual electricity consumption. Calibration under the scope of demand response at zone and equipment level is also described.
      355
  • Publication
    Developing building archetypes for electrical load shifting assessment: Analysis of Irish residential stock
    Appropriate use of demand side management (DSM) strategies in residential buildings, when placed in a smart grid environment, can help reduce power supplydemand mismatches by shifting electrical loads, thus leading to better integration of renewable energy sources, particularly wind and solar generation. In the current paper, detailed building energy simulation models of residential stock are developed, using an occupant focused approach. Five archetypes are considered over three construction periods, representative of about 82% of the Irish building stock. The archetype models were found to be accurate to within 10% of the Irish standards, as exemplified using the Dwelling Energy Assessment Procedure (DEAP), for space and water heating energy requirements. The proposed approach was found to be more accurate than DEAP to estimate the electricity consumption. By integrating high resolution models for occupancy and electrical equipment use, it can generate more accurate models of the housing stock and expands previous investigations to include occupant behaviour, electrical load shifting and thermal comfort issues.
      597
  • Publication
    Natural ventilation in residential building archetypes: a stochastic approach based on occupant behaviour and thermal comfort
    (International Building Performance Simulation Association (IBPSA), 2014-05-10) ; ; ; ;
    As houses become more energy efficient due to highly thermal resistant fabrics, the impact of natural ventilation on indoor comfort and on transient heating and cooling loads increases. These two constraints must be integrated within building performance simulation models when assessing the potential for electrical load shifting strategies in residential buildings placed in a smart grid environment. A natural ventilation model is developed and implemented for five residential building archetypes. A bottom-up methodology based on occupant behaviour, through the use of time-of-use data, is implemented at room level within EnergyPlus. A stochastic approach determines whether to open or close windows, depending on the occupancy state, the activity type and level, and the thermal comfort experienced. The algorithms proposed consider the main drivers governing window operation within a residential context. Focus is placed on the modelling challenges, and the impacts of the model are assessed using energy performance and thermal comfort.
      254
  • Publication
    High Resolution Space - Time Data: Methodology for Residential Building Simulation Modelling
    (International Building Performance Simulation Association (IBPSA), 2013-08-28) ; ; ; ;
    A bottom-up approach is developed for the specification of operational data with a high spacetime resolution, to be used as inputs in multi-zone residential building models. These archetype models will be used to analyse demand modulation of total domestic electricity consumption, thus requiring a detailed knowledge of domestic loads. The approach is based on national Time-Use Survey (TUS) resident activity data. To illustrate the approach, the EnergyPlus simulation platform is used to model a multi-zone case study building. Occupancy profiles, lighting load and disaggregated electrical appliance load profiles, as well as their associated heat gains, are generated and spatially mapped within the building. A good match is seen between synthesised and measured profiles. A greater sharing of electrical appliances, as the household size increases, is also seen. Fifteen-minute resolution of the model outputs is found to be sensible in the context of the current project, due to aggregation.
      345