Now showing 1 - 2 of 2
  • Publication
    Module Advisor: A Hybrid Recommender System for Elective Module Exploration
    Recommender systems are omni-present in our every day lives, guiding us through the vast amount of information available. However, in the academic world, personalised recommendations are less prominent, leaving students to navigate through the typically large space of available courses and modules manually. Since it is crucial for students to make informed choices about their learning pathways, we aim to improve the way students discover elective modules by developing a hybrid recommender system prototype that is specifically designed to help students find elective modules from a diverse set of subjects. We can improve the discoverability of long-tail options and help students broaden their horizons by combining notions of similarity and diversity.
      400ScopusĀ© Citations 3
  • Publication
    Module Advisor: Guiding Students with Recommendations
    Personalised recommendations feature prominently in many aspects of our lives, from the movies we watch, to the news we read, and even the people we date. However, one area that is still relatively underdeveloped is the educational sector where recommender systems have the potential to help students to make informed choices about their learning pathways. We aim to improve the way students discover elective modules by using a hybrid recommender system that is specifically designed to help students to better explore available options. By combining notions of content-based similarity and diversity, based on structural information about the space of modules, we can improve the discoverability of long-tail options that may uniquely suit students preferences and aspirations.
      618ScopusĀ© Citations 8