Now showing 1 - 5 of 5
  • Publication
    Biotransformation of fluorobiphenyl by Cunninghamella elegans
    The fungus Cunninghamella elegans is a useful model of human catabolism of xenobiotics. In this paper, the biotransformation of fluorinated biphenyls by C. elegans was investigated by analysis of the culture supernatants with a variety of analytical techniques. 4-Fluorobiphenyl was principally transformed to 4-fluoro-4′-hydroxybiphenyl, but other mono- and dihydroxylated compounds were detected in organic extracts by gas chromatography–mass spectrometry. Additionally, fluorinated water-soluble products were detected by 19F NMR and were identified as sulphate and β-glucuronide conjugates. Other fluorobiphenyls (2-fluoro-, 4,4′-difluoro- and 2,3,4,5,6-pentafluoro-biphenyl) were catabolised by C. elegans, yielding mono- and dihydroxylated products, but phase II metabolites were detected from 4,4′-difluorobiphenyl only.
    Scopus© Citations 23  1007
  • Publication
    Metabolism of fluoroorganic compounds in microorganisms: Impacts for the environment and the production of fine chemicals
    Incorporation of fluorine into an organic compound can favourably alter its physicochemical properties with respect to biological activity, stability and lipophilicity. Accordingly, this element is found in many pharmaceutical and industrial chemicals. Organofluorine compounds are accepted as substrates by many enzymes, and the interactions of microorganisms with these compounds are of relevance to the environment and the fine chemicals industry. One the one hand the microbial transformation of fluorinated compounds can lead to the generation of toxic compounds that are of environmental concern, yet similar biotransformations can yield difficult-to-synthesise products and intermediates, in particular derivatives of biologically active secondary metabolites. In this paper we review the historical and recent developments of organofluorine biotransformation in microorganisms, and highlight the possibility of using microbes as models of fluorinated drug metabolism in mammals.
    Scopus© Citations 50  1030
  • Publication
    Biotransformation of flurbiprofen by Cunninghamella species
    (American Society for Microbiology, 2010-09) ; ;
    The biotransformation of the fluorinated anti-inflammatory drug flurbiprofen was investigated in Cunninghamella spp. Mono- and di-hydroxylated metabolites were detected using gas chromatography-mass spectrometry and fluorine-19 nuclear magnetic resonance spectroscopy, and the major metabolite 4’-hydroxyflurbiprofen was isolated by preparative HPLC. C. elegans DSM 1908 and C. blakesleeana DSM 1906 also produced a phase II (conjugated) metabolite, which was identified as the sulfated drug via deconjugation experiments.
    Scopus© Citations 41  511
  • Publication
    Production of human metabolites of the anti-cancer drug flutamide via biotransformation in Cunninghamella species
    (Springer Netherlands, 2011-02-01) ;
    Fungi belonging to the genus Cunninghamella have enzymes similar to those employed by mammals for the detoxification of xenobiotics, thus they are useful as models of mammalian drug metabolism, and as a source for drug metabolites. We report the transformation of the anti-cancer drug flutamide in Cunninghamella sp. The most predominant phase I metabolites present in the plasma of humans, 2-hydroxyflutamide and 4-nitro-3-(trifluoromethyl)aniline, were also produced in Cunninghamella cultures. Other phase I and phase II metabolites were also detected using a combination of HPLC, GC–MS and 19F-NMR.
      521Scopus© Citations 18
  • Publication
    Filamentous fungal biofilm for production of human drug metabolites
    In drug development, access to drug metabolites is essential for assessment of toxicity and pharmacokinetic studies. Metabolites are usually acquired via chemical synthesis, although biological production is potentially more efficient with fewer waste management issues. A significant problem with the biological approach is the effective half-life of the biocatalyst, which can be resolved by immobilisation. The fungus Cunninghamella elegans is well established as a model of mammalian metabolism, although it has not yet been used to produce metabolites on a large scale. Here, we describe immobilisation of C. elegans as a biofilm, which can transform drugs to important human metabolites. The biofilm was cultivated on hydrophilic microtiter plates and in shake flasks containing a steel spring in contact with the glass. Fluorescence and confocal scanning laser microscopy revealed that the biofilm was composed of a dense network of hyphae, and biochemical analysis demonstrated that the matrix was predominantly polysaccharide. The medium composition was crucial for both biofilm formation and biotransformation of flurbiprofen. In shake flasks, the biofilm transformed 86% of the flurbiprofen added to hydroxylated metabolites within 24 h, which was slightly more than planktonic cultures (76%). The biofilm had a longer effective lifetime than the planktonic cells, which underwent lysis after 2×72 h cycles, and diluting the Sabouraud dextrose broth enabled the thickness of the biofilm to be controlled while retaining transformation efficiency. Thus, C. elegans biofilm has the potential to be applied as a robust biocatalyst for the production of human drug metabolites required for drug development.
    Scopus© Citations 26  680