Now showing 1 - 10 of 17
  • Publication
    Statement on the derivation of Health-Based Guidance Values (HBGVs) for regulated products that are also nutrients
    This Statement presents a proposal for harmonising the establishment of Health-Based Guidance Values (HBGVs) for regulated products that are also nutrients. This is a recurrent issue for food additives and pesticides, and may occasionally occur for other regulated products. The Statement describes the specific considerations that should be followed for establishing the HBGVs during the assessment of a regulated product that is also a nutrient. It also addresses the elements to be considered in the intake assessment; and proposes a decision tree for ensuring a harmonised process for the risk characterisation of regulated products that are also nutrients. The Scientific Committee recommends the involvement of the relevant EFSA Panels and units, in order to ensure an integrated and harmonised approach for the hazard and risk characterisation of regulated products that are also nutrients, considering the intake from all relevant sources.
    Scopus© Citations 28  185
  • Publication
    Guidance on the use of the benchmark dose approach in risk assessment
    The Scientific Committee (SC) reconfirms that the benchmark dose (BMD) approach is a scientifically more advanced method compared to the no-observed-adverse-effect-level (NOAEL) approach for deriving a Reference Point (RP). The major change compared to the previous Guidance (EFSA SC, 2017) concerns the Section 2.5, in which a change from the frequentist to the Bayesian paradigm is recommended. In the former, uncertainty about the unknown parameters is measured by confidence and significance levels, interpreted and calibrated under hypothetical repetition, while probability distributions are attached to the unknown parameters in the Bayesian approach, and the notion of probability is extended to reflect uncertainty of knowledge. In addition, the Bayesian approach can mimic a learning process and reflects the accumulation of knowledge over time. Model averaging is again recommended as the preferred method for estimating the BMD and calculating its credible interval. The set of default models to be used for BMD analysis has been reviewed and amended so that there is now a single set of models for quantal and continuous data. The flow chart guiding the reader step-by-step when performing a BMD analysis has also been updated, and a chapter comparing the frequentist to the Bayesian paradigm inserted. Also, when using Bayesian BMD modelling, the lower bound (BMDL) is to be considered as potential RP, and the upper bound (BMDU) is needed for establishing the BMDU/BMDL ratio reflecting the uncertainty in the BMD estimate. This updated guidance does not call for a general re-evaluation of previous assessments where the NOAEL approach or the BMD approach as described in the 2009 or 2017 Guidance was used, in particular when the exposure is clearly lower (e.g. more than one order of magnitude) than the health-based guidance value. Finally, the SC firmly reiterates to reconsider test guidelines given the wide application of the BMD approach.
    Scopus© Citations 39  33
  • Publication
    Guidance on protocol development for EFSA generic scientific assessments
    EFSA Strategy 2027 outlines the need for fit‐for‐purpose protocols for EFSA generic scientific assessments to aid in delivering trustworthy scientific advice. This EFSA Scientific Committee guidance document helps address this need by providing a harmonised and flexible framework for developing protocols for EFSA generic assessments. The guidance replaces the ‘Draft framework for protocol development for EFSA's scientific assessments’ published in 2020. The two main steps in protocol development are described. The first is problem formulation, which illustrates the objectives of the assessment. Here a new approach to translating the mandated Terms of Reference into scientifically answerable assessment questions and sub‐questions is proposed: the ‘APRIO' paradigm (Agent, Pathway, Receptor, Intervention and Output). Owing to its cross‐cutting nature, this paradigm is considered adaptable and broadly applicable within and across the various EFSA domains and, if applied using the definitions given in this guidance, is expected to help harmonise the problem formulation process and outputs and foster consistency in protocol development. APRIO may also overcome the difficulty of implementing some existing frameworks across the multiple EFSA disciplines, e.g. the PICO/PECO approach (Population, Intervention/Exposure, Comparator, Outcome). Therefore, although not mandatory, APRIO is recommended. The second step in protocol development is the specification of the evidence needs and the methods that will be applied for answering the assessment questions and sub‐questions, including uncertainty analysis. Five possible approaches to answering individual (sub‐)questions are outlined: using evidence from scientific literature and study reports; using data from databases other than bibliographic; using expert judgement informally collected or elicited via semi‐formal or formal expert knowledge elicitation processes; using mathematical/statistical models; and – not covered in this guidance – generating empirical evidence ex novo. The guidance is complemented by a standalone ‘template’ for EFSA protocols that guides the users step by step through the process of planning an EFSA scientific assessment.
      22
  • Publication
    Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health
    The European Food Safety Authority has produced this Guidance on human and animal health aspects (Part 1) of the risk assessment of nanoscience and nanotechnology applications in the food and feed chain. It covers the application areas within EFSA's remit, e.g. novel foods, food contact materials, food/feed additives and pesticides. The Guidance takes account of the new developments that have taken place since publication of the previous Guidance in 2011. Potential future developments are suggested in the scientific literature for nanoencapsulated delivery systems and nanocomposites in applications such as novel foods, food/feed additives, biocides, pesticides and food contact materials. Therefore, the Guidance has taken account of relevant new scientific studies that provide more insights to physicochemical properties, exposure assessment and hazard characterisation of nanomaterials. It specifically elaborates on physicochemical characterisation of nanomaterials in terms of how to establish whether a material is a nanomaterial, the key parameters that should be measured, the methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. It also details the aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vivo/in vitro toxicological studies are discussed and a tiered framework for toxicological testing is outlined. It describes in vitro degradation, toxicokinetics, genotoxicity as well as general issues relating to testing of nanomaterials. Depending on the initial tier results, studies may be needed to investigate reproductive and developmental toxicity, immunotoxicity, allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read‐across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes/mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis, and provides recommendations for further research in this area.
    Scopus© Citations 245  466
  • Publication
    Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals
    This Guidance document describes harmonised risk assessment methodologies for combined exposure to multiple chemicals for all relevant areas within EFSA's remit, i.e. human health, animal health and ecological areas. First, a short review of the key terms, scientific basis for combined exposure risk assessment and approaches to assessing (eco)toxicology is given, including existing frameworks for these risk assessments. This background was evaluated, resulting in a harmonised framework for risk assessment of combined exposure to multiple chemicals. The framework is based on the risk assessment steps (problem formulation, exposure assessment, hazard identification and characterisation, and risk characterisation including uncertainty analysis), with tiered and stepwise approaches for both whole mixture approaches and component‐based approaches. Specific considerations are given to component‐based approaches including the grouping of chemicals into common assessment groups, the use of dose addition as a default assumption, approaches to integrate evidence of interactions and the refinement of assessment groups. Case studies are annexed in this guidance document to explore the feasibility and spectrum of applications of the proposed methods and approaches for human and animal health and ecological risk assessment. The Scientific Committee considers that this Guidance is fit for purpose for risk assessments of combined exposure to multiple chemicals and should be applied in all relevant areas of EFSA's work. Future work and research are recommended.
    Scopus© Citations 327  413
  • Publication
    Evaluation of existing guidelines for their adequacy for the microbial characterisation and environmental risk assessment of microorganisms obtained through synthetic biology
    EFSA was asked by the European Commission to consider synthetic biology developments for agri-food use in the near future and to determine if the use of this technology is expected to constitute potential risks and hazards for the environment. Moreover, EFSA was requested to evaluate the adequacy of existing guidelines for risk assessment and if updated guidance is needed. The scope of this Opinion covers viable synthetic biology microorganisms (SynBioMs) expected to be deliberately released into the environment. The evaluation was based on: (i) horizon scanning of published information, (ii) gap analysis of existing guidelines covering the scope of this mandate, and (iii) future outlooks. A horizon scan showed that SynBioM applications could be ready for deliberate release into the environment of the EU in the next decade. However, extensively engineered SynBioMs are only expected in the wider future. For the microbial characterisation and the environmental risk assessment, the existing EFSA Guidances are useful as a basis. The extent to which existing Guidances can be used depends on the familiarity of the SynBioM with non-modified organisms. Among the recommendations for updated Guidance, the range of uses of products to be assessed covering all agri-food uses and taking into account all types of microorganisms, their relevant exposure routes and receiving environments. It is suggested that new EFSA Guidances address all ‘specific areas of risk’ as per Directive 2001/18/EC. No novel environmental hazards are expected for current and near future SynBioMs. However, the efficacy by which the SynBioMs interact with the environment may differ. This could lead to increased exposure and risk. Novel hazards connected with the development of xenobionts may be expected in the wider future.
    Scopus© Citations 17  194
  • Publication
    Genotoxicity assessment of chemical mixtures
    The EFSA Scientific Committee addressed in this document the peculiarities related to the genotoxicity assessment of chemical mixtures. The EFSA Scientific Committee suggests that first a mixture should be chemically characterised as far as possible. Although the characterisation of mixtures is relevant also for other toxicity aspects, it is particularly significant for the assessment of genotoxicity. If a mixture contains one or more chemical substances that are individually assessed to be genotoxic in vivo via a relevant route of administration, the mixture raises concern for genotoxicity. If a fully chemically defined mixture does not contain genotoxic chemical substances, the mixture is of no concern with respect to genotoxicity. If a mixture contains a fraction of chemical substances that have not been chemically identified, experimental testing of the unidentified fraction should be considered as the first option or, if this is not feasible, testing of the whole mixture should be undertaken. If testing of these fraction(s) or of the whole mixture in an adequately performed set of in vitro assays provides clearly negative results, the mixture does not raise concern for genotoxicity. If in vitro testing provides one or more positive results, an in vivo follow‐up study should be considered. For negative results in the in vivo follow‐up test(s), the possible limitations of in vivo testing should be weighed in an uncertainty analysis before reaching a conclusion of no concern with respect to genotoxicity. For positive results in the in vivo follow‐up test(s), it can be concluded that the mixture does raise a concern about genotoxicity.
    Scopus© Citations 111  317
  • Publication
    Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health
    The EFSA has updated the Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain, human and animal health. It covers the application areas within EFSA's remit, including novel foods, food contact materials, food/feed additives and pesticides. The updated guidance, now Scientific Committee Guidance on nano risk assessment (SC Guidance on Nano-RA), has taken account of relevant scientific studies that provide insights to physico-chemical properties, exposure assessment and hazard characterisation of nanomaterials and areas of applicability. Together with the accompanying Guidance on Technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles (Guidance on Particle-TR), the SC Guidance on Nano-RA specifically elaborates on physico-chemical characterisation, key parameters that should be measured, methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. The SC Guidance on Nano-RA also details aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vitro/in vivo toxicological studies are discussed and a tiered framework for toxicological testing is outlined. Furthermore, in vitro degradation, toxicokinetics, genotoxicity, local and systemic toxicity as well as general issues relating to testing of nanomaterials are described. Depending on the initial tier results, additional studies may be needed to investigate reproductive and developmental toxicity, chronic toxicity and carcinogenicity, immunotoxicity and allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read-across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes or mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis.
      100Scopus© Citations 137
  • Publication
    Draft for internal testing Scientific Committee guidance on appraising and integrating evidence from epidemiological studies for use in EFSA's scientific assessments
    EFSA requested its Scientific Committee to prepare a guidance document on appraising and integrating evidence from epidemiological studies for use in EFSA's scientific assessments. The guidance document provides an introduction to epidemiological studies and illustrates the typical biases of the different epidemiological study designs. It describes key epidemiological concepts relevant for evidence appraisal. Regarding study reliability, measures of association, exposure assessment, statistical inferences, systematic error and effect modification are explained. Regarding study relevance, the guidance describes the concept of external validity. The principles of appraising epidemiological studies are illustrated, and an overview of Risk of Bias (RoB) tools is given. A decision tree is developed to assist in the selection of the appropriate Risk of Bias tool, depending on study question, population and design. The customisation of the study appraisal process is explained, detailing the use of RoB tools and assessing the risk of bias in the body of evidence. Several examples of appraising experimental and observational studies using a Risk of Bias tool are annexed to the document to illustrate the application of the approach. This document constitutes a draft that will be applied in EFSA's assessments during a 1-year pilot phase and be revised and complemented as necessary. Before finalisation of the document, a public consultation will be launched.
    Scopus© Citations 13  258
  • Publication
    Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals
    This guidance document provides harmonised and flexible methodologies to apply scientific criteria and prioritisation methods for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. In the context of EFSA’s risk assessments, the problem formulation step defines the chemicals to be assessed in the terms of reference usually through regulatory criteria often set by risk managers based on legislative requirements. Scientific criteria such as hazard-driven criteria can be used to group these chemicals into assessment groups. In this guidance document, a framework is proposed to apply hazard-driven criteria for grouping of chemicals into assessment groups using mechanistic information on toxicity as the gold standard where available (i.e. common mode of action or adverse outcome pathway) through a structured weight of evidence approach. However, when such mechanistic data are not available, grouping may be performed using a common adverse outcome. Toxicokinetic data can also be useful for grouping, particularly when metabolism information is available for a class of compounds and common toxicologically relevant metabolites are shared. In addition, prioritisation methods provide means to identify low-priority chemicals and reduce the number of chemicals in an assessment group. Prioritisation methods include combined risk-based approaches, risk-based approaches for single chemicals and exposure-driven approaches. Case studies have been provided to illustrate the practical application of hazard-driven criteria and the use of prioritisation methods for grouping of chemicals in assessment groups. Recommendations for future work are discussed.
    Scopus© Citations 39  115