Now showing 1 - 2 of 2
  • Publication
    Quantifying the impact of bridge geometry and surrounding terrain: wind effects on bridges
    The safety and serviceability of long-span bridges can be significantly impacted by wind effects and therefore it is crucial to accurately estimate them during bridge design. This study develops full-scale 3-Dimensional CFD (computational fluid dynamics) simulation models to replicate wind conditions at the Rose Fitzgerald Kennedy Bridge in Ireland. The neglection of bridge geometries and the use of small scales in previous studies are significant limitations, and both the bridge geometry and surrounding terrain are included here at full-scale. Input values for wind conditions are mapped from weather simulations that apply the Weather Research and Forecasting (WRF) model. Wind velocities at four different points calculated by CFD simulations are compared with corresponding data collected from SHM field measurements. The calculated time-averaged wind velocities at four different locations on the bridge are shown to have relative differences of less than 10% to the measured wind velocities by anemometers 90% of the time. The maximum relative difference among all comparisons was only 15%, shown to be partially due to the inclusion of the full bridge and terrain geometry.
    Scopus© Citations 1  2
  • Publication
    Wind-Induced Phenomena in Long-Span Cable-Supported Bridges: A Comparative Review of Wind Tunnel Tests and Computational Fluid Dynamics Modelling
    Engineers, architects, planners and designers must carefully consider the effects of wind in their work. Due to their slender and flexible nature, long-span bridges can often experience vibrations due to the wind, and so the careful analysis of wind effects is paramount. Traditionally, wind tunnel tests have been the preferred method of conducting bridge wind analysis. In recent times, owing to improved computational power, computational fluid dynamics simulations are coming to the fore as viable means of analysing wind effects on bridges. The focus of this paper is on long-span cable-supported bridges. Wind issues in long-span cable-supported bridges can include flutter, vortex-induced vibrations and rain–wind-induced vibrations. This paper presents a state-of-the-art review of research on the use of wind tunnel tests and computational fluid dynamics modelling of these wind issues on long-span bridges.
      109Scopus© Citations 16