Now showing 1 - 10 of 19
  • Publication
    Spatially Related Sampling Uncertainty in the Assessment of Labile Soil Carbon and Nitrogen in an Irish Forest Plantation
    The importance of labile soil carbon (C) and nitrogen (N) in soil biogeochemical processes is now well recognized. However, the quantification of labile soil C and N in soils and the assessment of their contribution to ecosystem C and N budgets is often constrained by limited information on spatial variability. To address this, we examined spatial variability in dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) in a Sitka spruce forest in central Ireland. The results showed moderate variations in the concentrations of DOC and DTN based on the mean, minimum, and maximum, as well as the coefficients of variation. Residual values of DOC and DTN were shown to have moderate spatial autocorrelations, and the nugget sill ratios were 0.09% and 0.10%, respectively. Distribution maps revealed that both DOC and DTN concentrations in the study area decreased from the southeast. The variability of both DOC and DTN increased as the sampling area expanded and could be well parameterized as a power function of the sampling area. The cokriging technique performed better than the ordinary kriging for predictions of DOC and DTN, which are highly correlated. This study provides a statistically based assessment of spatial variations in DOC and DTN and identifies the sampling effort required for their accurate quantification, leading to improved assessments of forest ecosystem C and N budgets.
    Scopus© Citations 2  31
  • Publication
    The Impact of Modifications in Forest Litter Inputs on Soil N2O Fluxes: A Meta-Analysis
    Although litter can regulate the global climate by influencing soil N2O fluxes, there is no consensus on the major drivers or their relative importance and how these impact at the global scale. In this paper, we conducted a meta-analysis of 21 global studies to quantify the impact of litter removal and litter doubling on soil N2O fluxes from forests. Overall, our results showed that litter removal significantly reduced soil N2O fluxes (−19.0%), while a doubling of the amount of litter significantly increased soil N2O fluxes (30.3%), based on the results of a small number of studies. Litter removal decreased the N2O fluxes from tropical forest and temperate forest. The warmer the climate, the greater the soil acidity, and the larger the soil C:N ratio, the greater the impact on N2O emissions, which was particularly evident in tropical forest ecosystems. The decreases in soil N2O fluxes associated with litter removal were greater in acid soils (pH < 6.5) or soils with a C:N > 15. Litter removal decreased soil N2O fluxes from coniferous forests (−21.8%) and broad-leaved forests (−17.2%) but had no significant effect in mixed forests. Soil N2O fluxes were significantly reduced in experiments where the duration of litter removal was <1 year. These results showed that modifications in ecosystem N2O fluxes due to changes in the ground litter vary with forest type and need to be considered when evaluating current and future greenhouse gas budgets.
    Scopus© Citations 1  22
  • Publication
    No effect of warming and watering on soil nitrous oxide fluxes in a temperate sitka spruce forest ecosystem
    (Taylor & Francis, 2020-10-08) ;
    Soil fluxes of nitrous oxide (N2O) play an important role in the global greenhouse gas budget. However, the response of soil N2O emissions to climate change in temperate forest plantations is not yet well understood. In this study, we assessed the responses of soil N2O fluxes to experimental warming with or without water addition, using a replicated in situ heating (~2°C above ambient) and water addition (170 mm) experiment in a temperate Sitka spruce plantation forest over the period 2014–2016. We found that seasonal fluxes of N2O during the year were highly variable, ranging from net uptake to net emissions. Seasonal variations in soil N2O fluxes were not correlated with either soil temperature or soil moisture. In addition, none of the individual warming/watering treatments, or their interactions, had significant effects on soil N2O fluxes and N-related soil properties. Overall, our results suggest that despite future increases in temperature, soil N2O emission may remain largely unchanged in many temperate forest ecosystems that are often N-limited.
    Scopus© Citations 3  131
  • Publication
    The large Gunnera’s (G. tinctoria and G. manicata) in Europe in relation to EU regulation 1143/2014
    Incorrect labelling of plants in the horticultural trade and misidentification is widespread. For the inspection services of the EU member states, correct identification of G. tinctoria has become important since the species was added to the List of Union concern in accordance with EU regulation 1143/2014 in August 2017. In the horticultural trade Gunnera plants are generally of modest dimensions and rarely flowering, so that the major distinguishing morphological characters for the identification of the two large species, G. tinctoria and G. manicata, are missing. As G. tinctoria is included in the EU regulation, its trade is prohibited, although the closely related species, G. manicata is not included on the list. Given that it is often difficult to distinguish between these two large herbaceous species using morphological attributes we used standard chloroplast DNA barcode markers, supplemented at a later stage by ITS markers. Plant material of putative G. tinctoria or G. manicata was obtained from the native and introduced range, both from “wild” sources, botanical gardens, and the horticultural trade. In western Europe plants circulating in the horticultural trade turned out to be predominantly G. tinctoria, with only one plant in cultivation identified as true G. manicata and the G. manicata found in botanical gardens was a hybrid recently described as G. x cryptica.
      39
  • Publication
    Post-Invasion Recovery of Plant Communities Colonised by Gunnera tinctoria after Mechanical Removal or Herbicide Application and its Interaction with an Extreme Weather Event
    The interventions that are required for both the control and post-invasion restoration of native plant communities depends on several factors, including the efficacy of the measures that are used and how these interact with environmental factors. Here, we report on the results of an experiment on the effects of mechanical removal and herbicide application on the invasive plant Gunnera tinctoria and how an extreme weather event impacted on the invader and on the recovery of native coastal grassland communities. Both removal protocols were largely effective in eradicating mature plants, but the mechanical removal treatment resulted in a major increase in the number of G. tinctoria seedlings, which was exacerbated by the extreme event. Nine months after removal, the number of native species had recovered to c. 80% of that in uninvaded grasslands. In contrast to seedlings, mature plants of G. tinctoria showed a significant reduction in above-ground production after the extreme weather event, although these had largely recovered after six months. Overall, our results indicate that post-control restoration of the plant community may be possible without further significant management interventions. Nevertheless, since some invasive plants survived, further monitoring is required to ensure that recolonisation does not occur.
    Scopus© Citations 1  33
  • Publication
    Biological invaders: Always the bad guys?
    (Frontiers Media, 2022-11-08) ;
    Invasive species are recognized as one of the major environmental problems worldwide and responsible for a myriad of impacts on ecosystems and ecosystem processes. Although many invasive species exert a range of detrimental effects a more nuanced approach is now emerging, which acknowledges that they can make a positive or beneficial contribution (Schlaepfer et al., 2011; Vimercati et al., 2020, 2022; Mantoani et al., 2022). Clearly, a positive impact may not always be beneficial (Vimercati et al., 2022) and nutrient enrichment due the introduction of an alien nitrogen-fixing plant species, for instance, could result in the loss of important resident species with low nutrient requirements.
      38Scopus© Citations 2
  • Publication
    The Effect of Cutting and Waterlogging on Plant-Related CO2 and N2O Fluxes Associated with the Invasive N-Fixing Species Gunnera tinctoria
    The overall impact that plant invasions have on greenhouse gas emissions (GHG) by plant-mediated effects and how these interact with environmental and management factors is largely unknown. To address this, we report on the effects of leaf removal and waterlogging, either singularly or in combination, on the fluxes of CO2 and N2O associated with the invasive species Gunnera tinctoria. Both the removal of leaves with and without flooding resulted in higher CO2 emissions due to reductions in photosynthesis. Whilst waterlogging alone was also associated with a reduction in photosynthesis, this was slower than the effect of leaf removal. Significant N2O emissions were associated with intact plants, which increased immediately after leaf removal, or seven days after waterlogging with or without leaf removal. We found positive correlations between CO2 and N2O emissions and petiole and rhizome areas, indicating a size-dependent effect. Our results demonstrate that intact plants of G. tinctoria are a source of N2O emissions, which is enhanced, albeit transiently, by the removal of leaves. Consequently, management interventions on invasive plant populations that involve the removal of above-ground material, or waterlogging, would not only reduce CO2 uptake, but would further compromise the ecosystem GHG balance through enhanced N2O emissions.
      32
  • Publication
    How Can Litter Modify the Fluxes of CO2 and CH4 from Forest Soils? A Mini-Review
    Forests contribute strongly to global carbon (C) sequestration and the exchange of greenhouse gases (GHG) between the soil and the atmosphere. Whilst the microbial activity of forest soils is a major determinant of net GHG exchange, this may be modified by the presence of litter through a range of mechanisms. Litter may act as a physical barrier modifying gas exchange, water movement/retention and temperature/irradiance fluctuations; provide a source of nutrients for microbes; enhance any priming effects, and facilitate macro-aggregate formation. Moreover, any effects are influenced by litter quality and regulated by tree species, climatic conditions (rainfall, temperature), and forest management (clear-cutting, fertilization, extensive deforestation). Based on climate change projections, the importance of the litter layer is likely to increase due to an litter increase and changes in quality. Future studies will therefore have to take into account the effects of litter on soil CO2 and CH4 fluxes for various types of forests globally, including the impact of climate change, insect infestation, and shifts in tree species composition, as well as a better understanding of its role in monoterpene production, which requires the integration of microbiological studies conducted on soils in different climatic zones.
      32Scopus© Citations 10
  • Publication
    Expression of cyanobacterial genes enhanced CO2 assimilation and biomass production in transgenic Arabidopsis thaliana
    Background - Photosynthesis is a key process in plants that is compromised by the oxygenase activity of Rubisco, which leads to the production of toxic compound phosphoglycolate that is catabolized by photorespiratory pathway. Transformation of plants with photorespiratory bypasses have been shown to reduce photorespiration and enhance plant biomass. Interestingly, engineering of a single gene from such photorespiratory bypasses has also improved photosynthesis and plant productivity. Although single gene transformations may not completely reduce photorespiration, increases in plant biomass accumulation have still been observed indicating an alternative role in regulating different metabolic processes. Therefore, the current study was aimed at evaluating the underlying mechanism (s) associated with the effects of introducing a single cyanobacterial glycolate decarboxylation pathway gene on photosynthesis and plant performance. Methods - Transgenic Arabidopsis thaliana plants (GD, HD, OX) expressing independently cyanobacterial decarboxylation pathway genes i.e., glycolate dehydrogenase, hydroxyacid dehydrogenase, and oxalate decarboxylase, respectively, were utilized. Photosynthetic, fluorescence related, and growth parameters were analyzed. Additionally, transcriptomic analysis of GD transgenic plants was also performed. Results - The GD plants exhibited a significant increase (16%) in net photosynthesis rate while both HD and OX plants showed a non-significant (11%) increase as compared to wild type plants (WT). The stomatal conductance was significantly higher (24%) in GD and HD plants than the WT plants. The quantum efficiencies of photosystem II, carbon dioxide assimilation and the chlorophyll fluorescence-based photosynthetic electron transport rate were also higher than WT plants. The OX plants displayed significant reductions in the rate of photorespiration relative to gross photosynthesis and increase in the ratio of the photosynthetic electron flow attributable to carboxylation reactions over that attributable to oxygenation reactions. GD, HD and OX plants accumulated significantly higher biomass and seed weight. Soluble sugars were significantly increased in GD and HD plants, while the starch levels were higher in all transgenic plants. The transcriptomic analysis of GD plants revealed 650 up-regulated genes mainly related to photosynthesis, photorespiratory pathway, sucrose metabolism, chlorophyll biosynthesis and glutathione metabolism. Conclusion - This study revealed the potential of introduced cyanobacterial pathway genes to enhance photosynthetic and growth-related parameters. The upregulation of genes related to different pathways provided evidence of the underlying mechanisms involved particularly in GD plants. However, transcriptomic profiling of HD and OX plants can further help to identify other potential mechanisms involved in improved plant productivity.
    Scopus© Citations 6  32
  • Publication
    Variations in Soil Properties and CO2 Emissions of a Temperate Forest Gully Soil along a Topographical Gradient
    Although forest soils play an important role in the carbon cycle, the influence of topography has received little attention. Since the topographical gradient may affect CO2 emissions and C sequestration, the aims of the study were: (1) to identify the basic physicochemical and microbial parameters of the top, mid-slope, and bottom of a forest gully; (2) to carry out a quantitative assessment of CO2 emission from these soils incubated at different moisture conditions (9% and 12% v/v) and controlled temperature (25 °C); and (3) to evaluate the interdependence between the examined parameters. We analyzed the physicochemical (content of total N, organic C, pH, clay, silt, and sand) and microbial (enzymatic activity, basal respiration, and soil microbial biomass) parameters of the gully upper, mid-slope, and bottom soil. The Fourier Transformed Infrared spectroscopy (FTIR) method was used to measure CO2 emitted from soils. The position in the forest gully had a significant effect on all soil variables with the gully bottom having the highest pH, C, N concentration, microbial biomass, catalase activity, and CO2 emissions. The sand content decreased as follows: top > bottom > mid-slope and the upper area had significantly lower clay content. Dehydrogenase activity was the lowest in the mid-slope, probably due to the lower pH values. All samples showed higher CO2 emissions at higher moisture conditions, and this decreased as follows: bottom > top > mid-slope. There was a positive correlation between soil CO2 emissions and soil microbial biomass, pH, C, and N concentration, and a positive relationship with catalase activity, suggesting that the activity of aerobic microorganisms was the main driver of soil respiration. Whilst the general applicability of these results to other gully systems is uncertain, the identification of the slope-related movement of water and inorganic/organic materials as a significant driver of location-dependent differences in soil respiration, may result in some commonality in the changes observed across different gully systems.
    Scopus© Citations 3  17