Options
Development of a syndromic surveillance system for Irish dairy cattle using milk recording data
Date Issued
2022-07
Date Available
2022-09-08T15:19:46Z
Abstract
In the last decade and a half, emerging vector-borne diseases have become a substantial threat to cattle across Europe. To mitigate the impact of the emergence of new diseases, outbreaks must be detected early. However, the clinical signs associated with many diseases may be nonspecific. Furthermore, there is often a delay in the development of new diagnostic tests for novel pathogens which limits the ability to detect emerging disease in the initial stages. Syndromic Surveillance has been proposed as an additional surveillance method that could augment traditional methods by detecting aberrations in non-specific disease indicators. The aim of this study was to develop a syndromic surveillance system for Irish dairy herds based on routinely collected milk recording and meteorological data. We sought to determine whether the system would have detected the 2012 Schmallenberg virus (SBV) incursion into Ireland earlier than conventional surveillance methods. Using 7,743,138 milk recordings from 730,724 cows in 7037 herds between 2007 and 2012, linear mixed-effects models were developed to predict milk yield and alarms generated with temporally clustered deviations from predicted values. Additionally, hotspot spatial analyses were conducted at corresponding time points. Using a range of thresholds, our model generated alarms throughout September 2012, between 4 and 6 weeks prior to the first laboratory confirmation of SBV in Ireland. This system for monitoring milk yield represents both a potentially useful tool for early detection of disease, and a valuable foundation for developing similar tools using other metrics.
Sponsorship
Department of Agriculture, Food and the Marine
Type of Material
Journal Article
Publisher
Elsevier
Journal
Preventive Veterinary Medicine
Volume
204
Start Page
1
End Page
6
Copyright (Published Version)
2022 The Authors
Language
English
Status of Item
Peer reviewed
ISSN
0167-5877
This item is made available under a Creative Commons License
File(s)
No Thumbnail Available
Name
1-s2.0-S0167587722001003-main.pdf
Size
1.49 MB
Format
Adobe PDF
Checksum (MD5)
922daf676a494dac7b79043ed9600084
Owning collection
Mapped collections